Problem 5) Legendre equation: $(1 - x^2)f''(x) - 2xf'(x) + n(n+1)f(x) = 0$.

Frobenius's solution:

$$f(x) = \sum_{k=0}^{\infty} A_k x^{k+s},$$

$$f'(x) = \sum_{k=0}^{\infty} (k+s) A_k x^{k+s-1},$$

$$f''(x) = \sum_{k=0}^{\infty} (k+s)(k+s-1)A_k x^{k+s-2}.$$

Substituting the above expressions into the Legendre equation, we find

$$\sum_{k=0}^{\infty} (k+s)(k+s-1)A_k x^{k+s-2} - \sum_{k=0}^{\infty} (k+s)(k+s-1)A_k x^{k+s} - \sum_{k=0}^{\infty} 2(k+s)A_k x^{k+s} + \sum_{k=0}^{\infty} n(n+1)A_k x^{k+s} = 0.$$

The first sum in the above equation may be rewritten as follows:

$$\begin{split} \sum_{k=0}^{\infty} (k+s)(k+s-1)A_k x^{k+s-2} &= s(s-1)A_0 x^{s-2} + (1+s)sA_1 x^{s-1} \\ &+ \sum_{k=2}^{\infty} (k+s)(k+s-1)A_k x^{k+s-2} \to \boxed{k'=k-2} \\ &= s(s-1)A_0 x^{s-2} + s(s+1)A_1 x^{s-1} + \sum_{k'=0}^{\infty} (k'+2+s)(k'+2+s-1)A_{k'+2} x^{k'+s} \\ &= s(s-1)A_0 x^{s-2} + s(s+1)A_1 x^{s-1} + \sum_{k=0}^{\infty} (k+s+2)(k+s+1)A_{k+2} x^{k+s}. \end{split}$$

Combining the preceding results, we arrive at

$$s(s-1)A_0 = 0$$
,
 $s(s+1)A_1 = 0$, Indicial equations

$$(k+s+2)(k+s+1)A_{k+2} = [(k+s)(k+s-1) + 2(k+s) - n(n+1)]A_k - k = 0,1,2,\cdots$$

Case i) s = 0 satisfies both indicial equations, allowing A_0 and A_1 to be arbitrary coefficients. The recursion relation then yields the remaining coefficients, as follows:

$$A_{k+2} = \frac{k(k+1) - n(n+1)}{(k+1)(k+2)} A_k. \quad \blacktriangleleft k = 0, 1, 2, \dots$$

Case ii) s = 1 is a solution of the first indicial equation, which allows A_0 to be an arbitrary coefficient. However, A_1 must now be zero. The recursion relation in this case is

$$A_{k+2} = \frac{(k+1)(k+2) - n(n+1)}{(k+2)(k+3)} A_k. - k = 0, 1, 2, \dots$$

Consequently, $A_3 = A_5 = A_7 = \cdots = 0$. The nonzero coefficients obtained with the aid of the above recursion relation are A_0, A_2, A_4, \cdots . These are similar to the coefficients obtained in Case (i), corresponding to s = 0, for A_1, A_3, A_5, \cdots , since k in the former recursion relation appears as k + 1 in the latter. Considering that $f(x) = \sum_{k=0}^{\infty} A_{2k+1} x^{2k+1}$ in the case of s = 0 with odd powers of x, whereas, in the case of s = 1, $f(x) = x^s \sum_{k=0}^{\infty} A_{2k} x^{2k} = \sum_{k=0}^{\infty} A_{2k} x^{2k+1}$, we conclude that the present solution (obtained for s = 1) is the same as the odd-powered solution obtained in Case (i) for s = 0.

Case iii) s = -1 is a solution of the second indicial equation, which allows A_1 to be an arbitrary coefficient. However, A_0 must now be zero. The recursion relation in this case is

$$A_{k+2} = \frac{(k-1)k - n(n+1)}{k(k+1)} A_k$$
. $\checkmark k = 0, 1, 2, \cdots$

The coefficients A_1, A_3, A_5, \cdots obtained with the aid of the above recursion relation are similar to those obtained in Case (i), corresponding to s = 0, for A_0, A_2, A_4, \cdots , since k in the former recursion relation appears as k - 1 in the latter. Considering that $f(x) = \sum_{k=0}^{\infty} A_{2k} x^{2k}$ in the case of s = 0 with even powers of x, whereas, in the present case of s = -1, $f(x) = x^s \sum_{k=0}^{\infty} A_{2k+1} x^{2k+1} = \sum_{k=0}^{\infty} A_{2k+1} x^{2k}$, we conclude that the present solution (obtained in the case of s = -1) is the same as the even-powered solution obtained in Case (i) for s = 0.

In the case of s=-1 and $A_0=0$, the presence of k in the recursion relation's denominator indicates that $A_2 \neq 0$ should be allowed. Thus, $f(x) = x^s \sum_{k=1}^{\infty} A_{2k} x^{2k} = \sum_{k=1}^{\infty} A_{2k} x^{2k-1}$ is a legitimate solution. However, this is the same solution as that obtained in Case (i) for s=0 with odd powers of x. Once again, a solution with s=-1 is subsumed by the solutions for s=0.

Returning to the general solution obtained in Case (i) for s = 0, we now try to rewrite the numerator of the recursion relation as a *product* of two terms. The second-order polynomial k(k+1) - n(n+1) has two roots; that is,

$$k^2 + k - n(n+1) = 0 \rightarrow k = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + n(n+1)} = -\frac{1}{2} \pm \sqrt{(n+\frac{1}{2})^2} = n, -(n+1).$$

Therefore, k(k+1) - n(n+1) = (k-n)(k+n+1). The recursion relation thus becomes

$$A_{k+2} = \frac{(k-n)(k+n+1)}{(k+1)(k+2)} A_k. \quad \blacktriangleleft k = 0, 1, 2, \cdots$$

For even coefficients, we have

$$\begin{split} A_2 &= -\frac{n(n+1)}{1\cdot 2}A_0, \\ A_4 &= \frac{(2-n)(3+n)}{3\cdot 4} \times \frac{-n(n+1)}{1\cdot 2}A_0 = \frac{n(n-2)\times (n+1)(n+3)}{4!}A_0, \\ A_6 &= -\frac{n(n-2)(n-4)\times (n+1)(n+3)(n+5)}{6!}A_0, \\ &\vdots \\ A_{2m} &= (-1)^m \frac{n(n-2)(n-4)\cdots (n-2m+2)\times (n+1)(n+3)(n+5)\cdots (n+2m-1)}{(2m)!}A_0. \end{split}$$

Note that, if n is an even integer, the above series terminates at k = 2m = n, whereas for odd-integer values of n, the series continues indefinitely. Similarly, for odd coefficients, we find

$$\begin{split} A_3 &= -\frac{(n-1)(n+2)}{2\cdot 3} A_1, \\ A_5 &= \frac{(3-n)(n+4)}{4\cdot 5} \times \frac{-(n-1)(n+2)}{2\cdot 3} A_1 = \frac{(n-1)(n-3)\times (n+2)(n+4)}{5!} A_1, \\ &\vdots \\ A_{2m+1} &= (-1)^m \frac{(n-1)(n-3)\cdots (n-2m+1)\times (n+2)(n+4)\cdots (n+2m)}{(2m+1)!} A_1. \end{split}$$

Note that, if n is an odd integer, the above series terminates at k = 2m + 1 = n, whereas for even-integer values of n, the series continues indefinitely. The two *independent* solutions of the Legendre equation are thus given by

$$f_1(x) = A_0 + \sum_{m=1}^{\infty} A_{2m} x^{2m},$$
 $f_2(x) = A_1 x + \sum_{m=1}^{\infty} A_{2m+1} x^{2m+1}.$