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Opti 403A/503A Solutions 1/2 

Problem 5) Legendre equation: (1 − 𝑥𝑥2)𝑓𝑓″(𝑥𝑥) − 2𝑥𝑥𝑓𝑓′(𝑥𝑥) + 𝑛𝑛(𝑛𝑛 + 1)𝑓𝑓(𝑥𝑥) = 0. 

Frobenius’s solution: 𝑓𝑓(𝑥𝑥) = ∑ 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠∞
𝑘𝑘=0 , 

 𝑓𝑓′(𝑥𝑥) = ∑ (𝑘𝑘 + 𝑠𝑠)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠−1∞
𝑘𝑘=0 , 

 𝑓𝑓″(𝑥𝑥) = ∑ (𝑘𝑘 + 𝑠𝑠)(𝑘𝑘 + 𝑠𝑠 − 1)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠−2∞
𝑘𝑘=0 . 

Substituting the above expressions into the Legendre equation, we find 

 ∑ (𝑘𝑘 + 𝑠𝑠)(𝑘𝑘 + 𝑠𝑠 − 1)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠−2∞
𝑘𝑘=0 − ∑ (𝑘𝑘 + 𝑠𝑠)(𝑘𝑘 + 𝑠𝑠 − 1)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠 − ∑ 2(𝑘𝑘 + 𝑠𝑠)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠∞

𝑘𝑘=0
∞
𝑘𝑘=0  

 +∑ 𝑛𝑛(𝑛𝑛 + 1)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠∞
𝑘𝑘=0 = 0. 

The first sum in the above equation may be rewritten as follows: 

 ∑ (𝑘𝑘 + 𝑠𝑠)(𝑘𝑘 + 𝑠𝑠 − 1)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠−2∞
𝑘𝑘=0 = 𝑠𝑠(𝑠𝑠 − 1)𝐴𝐴0𝑥𝑥𝑠𝑠−2 + (1 + 𝑠𝑠)𝑠𝑠𝐴𝐴1𝑥𝑥𝑠𝑠−1 

 +∑ (𝑘𝑘 + 𝑠𝑠)(𝑘𝑘 + 𝑠𝑠 − 1)𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘+𝑠𝑠−2∞
𝑘𝑘=2  

 = 𝑠𝑠(𝑠𝑠 − 1)𝐴𝐴0𝑥𝑥𝑠𝑠−2 + 𝑠𝑠(𝑠𝑠 + 1)𝐴𝐴1𝑥𝑥𝑠𝑠−1 + ∑ (𝑘𝑘′ + 2 + 𝑠𝑠)(𝑘𝑘′ + 2 + 𝑠𝑠 − 1)𝐴𝐴𝑘𝑘′+2 𝑥𝑥𝑘𝑘
′+𝑠𝑠∞

𝑘𝑘′=0  

 = 𝑠𝑠(𝑠𝑠 − 1)𝐴𝐴0𝑥𝑥𝑠𝑠−2 + 𝑠𝑠(𝑠𝑠 + 1)𝐴𝐴1𝑥𝑥𝑠𝑠−1 + ∑ (𝑘𝑘 + 𝑠𝑠 + 2)(𝑘𝑘 + 𝑠𝑠 + 1)𝐴𝐴𝑘𝑘+2 𝑥𝑥𝑘𝑘+𝑠𝑠∞
𝑘𝑘=0 . 

Combining the preceding results, we arrive at 

 𝑠𝑠(𝑠𝑠 − 1)𝐴𝐴0 = 0,  

 𝑠𝑠(𝑠𝑠 + 1)𝐴𝐴1 = 0, 

 (𝑘𝑘 + 𝑠𝑠 + 2)(𝑘𝑘 + 𝑠𝑠 + 1)𝐴𝐴𝑘𝑘+2 = [(𝑘𝑘 + 𝑠𝑠)(𝑘𝑘 + 𝑠𝑠 − 1) + 2(𝑘𝑘 + 𝑠𝑠) − 𝑛𝑛(𝑛𝑛 + 1)]𝐴𝐴𝑘𝑘. 

Case i) 𝑠𝑠 = 0 satisfies both indicial equations, allowing 𝐴𝐴0 and 𝐴𝐴1 to be arbitrary coefficients. 
The recursion relation then yields the remaining coefficients, as follows: 

 𝐴𝐴𝑘𝑘+2 = 𝑘𝑘(𝑘𝑘+1) − 𝑛𝑛(𝑛𝑛+1)
(𝑘𝑘+1)(𝑘𝑘+2) 𝐴𝐴𝑘𝑘. 

Case ii) 𝑠𝑠 = 1 is a solution of the first indicial equation, which allows 𝐴𝐴0 to be an arbitrary 
coefficient. However, 𝐴𝐴1 must now be zero. The recursion relation in this case is 

 𝐴𝐴𝑘𝑘+2 = (𝑘𝑘+1)(𝑘𝑘+2) − 𝑛𝑛(𝑛𝑛+1)
(𝑘𝑘+2)(𝑘𝑘+3) 𝐴𝐴𝑘𝑘. 

Consequently, 𝐴𝐴3 = 𝐴𝐴5 = 𝐴𝐴7 = ⋯ = 0. The nonzero coefficients obtained with the aid of 
the above recursion relation are 𝐴𝐴0,𝐴𝐴2,𝐴𝐴4,⋯ . These are similar to the coefficients obtained in 
Case (i), corresponding to 𝑠𝑠 = 0, for 𝐴𝐴1,𝐴𝐴3,𝐴𝐴5,⋯, since 𝑘𝑘 in the former recursion relation 
appears as 𝑘𝑘 + 1 in the latter. Considering that 𝑓𝑓(𝑥𝑥) = ∑ 𝐴𝐴2𝑘𝑘+1𝑥𝑥2𝑘𝑘+1∞

𝑘𝑘=0  in the case of 𝑠𝑠 = 0 with 
odd powers of 𝑥𝑥, whereas, in the case of 𝑠𝑠 = 1, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑠𝑠 ∑ 𝐴𝐴2𝑘𝑘𝑥𝑥2𝑘𝑘∞

𝑘𝑘=0 = ∑ 𝐴𝐴2𝑘𝑘𝑥𝑥2𝑘𝑘+1∞
𝑘𝑘=0 , we 

conclude that the present solution (obtained for 𝑠𝑠 = 1) is the same as the odd-powered solution 
obtained in Case (i) for 𝑠𝑠 = 0. 

Case iii) 𝑠𝑠 = −1 is a solution of the second indicial equation, which allows 𝐴𝐴1 to be an arbitrary 
coefficient. However, 𝐴𝐴0 must now be zero. The recursion relation in this case is 

𝑘𝑘 = 0, 1, 2,⋯ 

𝑘𝑘′ = 𝑘𝑘 − 2 

𝑘𝑘 = 0, 1, 2,⋯ 

𝑘𝑘′ → 𝑘𝑘 

Indicial equations 

𝑘𝑘 = 0, 1, 2,⋯ 
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 𝐴𝐴𝑘𝑘+2 = (𝑘𝑘−1)𝑘𝑘 − 𝑛𝑛(𝑛𝑛+1)
𝑘𝑘(𝑘𝑘+1) 𝐴𝐴𝑘𝑘. 

The coefficients 𝐴𝐴1,𝐴𝐴3,𝐴𝐴5,⋯ obtained with the aid of the above recursion relation are 
similar to those obtained in Case (i), corresponding to 𝑠𝑠 = 0, for 𝐴𝐴0,𝐴𝐴2,𝐴𝐴4,⋯ , since 𝑘𝑘 in the 
former recursion relation appears as 𝑘𝑘 − 1 in the latter. Considering that 𝑓𝑓(𝑥𝑥) = ∑ 𝐴𝐴2𝑘𝑘𝑥𝑥2𝑘𝑘∞

𝑘𝑘=0  in 
the case of 𝑠𝑠 = 0 with even powers of 𝑥𝑥, whereas, in the present case of 𝑠𝑠 = −1, 𝑓𝑓(𝑥𝑥) =
𝑥𝑥𝑠𝑠 ∑ 𝐴𝐴2𝑘𝑘+1𝑥𝑥2𝑘𝑘+1∞

𝑘𝑘=0 = ∑ 𝐴𝐴2𝑘𝑘+1𝑥𝑥2𝑘𝑘∞
𝑘𝑘=0 , we conclude that the present solution (obtained in the case 

of 𝑠𝑠 = −1) is the same as the even-powered solution obtained in Case (i) for 𝑠𝑠 = 0. 
In the case of 𝑠𝑠 = −1 and 𝐴𝐴0 = 0, the presence of 𝑘𝑘 in the recursion relation’s denominator 

indicates that 𝐴𝐴2 ≠ 0 should be allowed. Thus, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑠𝑠 ∑ 𝐴𝐴2𝑘𝑘𝑥𝑥2𝑘𝑘∞
𝑘𝑘=1 = ∑ 𝐴𝐴2𝑘𝑘𝑥𝑥2𝑘𝑘−1∞

𝑘𝑘=1  is a 
legitimate solution. However, this is the same solution as that obtained in Case (i) for 𝑠𝑠 = 0 with 
odd powers of 𝑥𝑥. Once again, a solution with 𝑠𝑠 = −1 is subsumed by the solutions for 𝑠𝑠 = 0. 

Returning to the general solution obtained in Case (i) for 𝑠𝑠 = 0, we now try to rewrite the 
numerator of the recursion relation as a product of two terms. The second-order polynomial 
𝑘𝑘(𝑘𝑘 + 1) − 𝑛𝑛(𝑛𝑛 + 1) has two roots; that is, 

 𝑘𝑘2 + 𝑘𝑘 − 𝑛𝑛(𝑛𝑛 + 1) = 0  →    𝑘𝑘 = −½ ± �¼ + 𝑛𝑛(𝑛𝑛 + 1) = −½ ±�(𝑛𝑛 + ½)2 = 𝑛𝑛,−(𝑛𝑛 + 1). 

Therefore, 𝑘𝑘(𝑘𝑘 + 1) − 𝑛𝑛(𝑛𝑛 + 1) = (𝑘𝑘 − 𝑛𝑛)(𝑘𝑘 + 𝑛𝑛 + 1). The recursion relation thus becomes 

 𝐴𝐴𝑘𝑘+2 = (𝑘𝑘−𝑛𝑛)(𝑘𝑘+𝑛𝑛+1)
(𝑘𝑘+1)(𝑘𝑘+2) 𝐴𝐴𝑘𝑘.  

For even coefficients, we have 

 𝐴𝐴2 = −𝑛𝑛(𝑛𝑛+1)
1∙2

𝐴𝐴0, 

 𝐴𝐴4 = (2−𝑛𝑛)(3+𝑛𝑛)
3∙4

× −𝑛𝑛(𝑛𝑛+1)
1∙2

𝐴𝐴0 = 𝑛𝑛(𝑛𝑛−2) × (𝑛𝑛+1)(𝑛𝑛+3)
4!

𝐴𝐴0, 

 𝐴𝐴6 = −𝑛𝑛(𝑛𝑛−2)(𝑛𝑛−4) × (𝑛𝑛+1)(𝑛𝑛+3)(𝑛𝑛+5)
6!

𝐴𝐴0, 
 ⋮ 
 𝐴𝐴2𝑚𝑚 = (−1)𝑚𝑚 𝑛𝑛(𝑛𝑛−2)(𝑛𝑛−4)⋯(𝑛𝑛−2𝑚𝑚+2) × (𝑛𝑛+1)(𝑛𝑛+3)(𝑛𝑛+5)⋯(𝑛𝑛+2𝑚𝑚−1)

(2𝑚𝑚)!
𝐴𝐴0. 

Note that, if 𝑛𝑛 is an even integer, the above series terminates at 𝑘𝑘 = 2𝑚𝑚 = 𝑛𝑛, whereas for 
odd-integer values of 𝑛𝑛, the series continues indefinitely. Similarly, for odd coefficients, we find 

 𝐴𝐴3 = − (𝑛𝑛−1)(𝑛𝑛+2)
2∙3

𝐴𝐴1, 

 𝐴𝐴5 = (3−𝑛𝑛)(𝑛𝑛+4)
4∙5

× −(𝑛𝑛−1)(𝑛𝑛+2)
2∙3

𝐴𝐴1 = (𝑛𝑛−1)(𝑛𝑛−3) × (𝑛𝑛+2)(𝑛𝑛+4)
5!

𝐴𝐴1, 
 ⋮ 
 𝐴𝐴2𝑚𝑚+1 = (−1)𝑚𝑚 (𝑛𝑛−1)(𝑛𝑛−3)⋯(𝑛𝑛−2𝑚𝑚+1) × (𝑛𝑛+2)(𝑛𝑛+4)⋯(𝑛𝑛+2𝑚𝑚)

(2𝑚𝑚+1)!
𝐴𝐴1. 

Note that, if 𝑛𝑛 is an odd integer, the above series terminates at 𝑘𝑘 = 2𝑚𝑚 + 1 = 𝑛𝑛, whereas for 
even-integer values of 𝑛𝑛, the series continues indefinitely. The two independent solutions of the 
Legendre equation are thus given by 

 𝑓𝑓1(𝑥𝑥) = 𝐴𝐴0 + ∑ 𝐴𝐴2𝑚𝑚𝑥𝑥2𝑚𝑚∞
𝑚𝑚=1 , 𝑓𝑓2(𝑥𝑥) = 𝐴𝐴1𝑥𝑥 + ∑ 𝐴𝐴2𝑚𝑚+1𝑥𝑥2𝑚𝑚+1∞

𝑚𝑚=1 . 

𝑘𝑘 = 0, 1, 2,⋯ 

𝑘𝑘 = 0, 1, 2,⋯ 


