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Opti 503A Solutions 1/1 
 
Problem 10) The composite function is 𝐴𝐴(𝑟𝑟1, 𝑟𝑟2,⋯ , 𝑟𝑟𝑁𝑁) + 𝜆𝜆𝜆𝜆(𝑟𝑟1, 𝑟𝑟2,⋯ , 𝑟𝑟𝑁𝑁). Setting the partial 
derivative of the composite function with respect to 𝑟𝑟𝑛𝑛 equal to zero, we will have 

 𝜕𝜕𝑟𝑟𝑛𝑛𝐴𝐴 + 𝜆𝜆𝜕𝜕𝑟𝑟𝑛𝑛𝑃𝑃 = 𝑟𝑟𝑛𝑛∆𝜃𝜃 + 𝜆𝜆∆𝜃𝜃 = 0    →       𝑟𝑟𝑛𝑛 = −𝜆𝜆. (1) 

Next, we enforce the constraint 𝑃𝑃 = 𝑃𝑃0. We find 𝑃𝑃 = ∑ 𝑟𝑟𝑛𝑛𝑛𝑛 ∆𝜃𝜃 = −𝜆𝜆∑ ∆𝜃𝜃𝑛𝑛 = −2𝜋𝜋𝜋𝜋 = 𝑃𝑃0, 
which yields 𝜆𝜆 = −𝑃𝑃0 2𝜋𝜋⁄ . We will then have 𝑟𝑟1 = 𝑟𝑟2 = ⋯ = 𝑟𝑟𝑁𝑁 = −𝜆𝜆 = 𝑃𝑃0 2𝜋𝜋⁄ . The curve which 
encloses the maximum area 𝐴𝐴 for a given perimeter 𝑃𝑃 = 𝑃𝑃0 is a circle of radius 𝑟𝑟 = 𝑃𝑃0 2𝜋𝜋⁄ . 

Digression. While the enclosed area 𝐴𝐴 is accurately represented by ∫ ½𝑟𝑟2(𝜃𝜃)d𝜃𝜃2𝜋𝜋

𝜃𝜃=0
, the 

expression used in this problem for the perimeter 𝑃𝑃, 
namely, ∫ 𝑟𝑟(𝜃𝜃)d𝜃𝜃2𝜋𝜋

𝜃𝜃=0
, is reasonably accurate provided that 

the closed contour does not deviate too far from a circle. 
To appreciate this, note in the diagram on the right-hand 
side that the integral of ½𝑟𝑟2(𝜃𝜃) yields the expected area 
of a triangle, whereas the integral of 𝑟𝑟(𝜃𝜃) does not yield 
the expected length of a line segment; that is, 
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 = ½𝑟𝑟02(tan𝜃𝜃1 − tan𝜃𝜃0) = ½𝑟𝑟0(𝑥𝑥1 − 𝑥𝑥0). (2) 

 ∫ 𝑟𝑟(𝜃𝜃)d𝜃𝜃𝜃𝜃1
𝜃𝜃0
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𝜃𝜃0
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1−tan(½𝜃𝜃0)�. (3) 

When tan(½𝜃𝜃) is sufficiently small, we will have ln[1 ± tan(½𝜃𝜃)] ≅ ± tan(½𝜃𝜃) ≅ ±½𝜃𝜃, 
in which case the expression on the right-hand side of Eq.(3) reduces to 𝑟𝑟0(𝜃𝜃1 − 𝜃𝜃0) ≅ 𝑥𝑥1 − 𝑥𝑥0. 
In general, however, ∫ 𝑟𝑟(𝜃𝜃)d𝜃𝜃2𝜋𝜋

𝜃𝜃=0
 is not equal to 𝑥𝑥1 − 𝑥𝑥0. 

A more accurate formula for the perimeter is 𝑃𝑃 = ∑ �𝑟𝑟𝑛𝑛−12 + 𝑟𝑟𝑛𝑛2 − 2𝑟𝑟𝑛𝑛−1𝑟𝑟𝑛𝑛 cos(∆𝜃𝜃)𝑁𝑁
𝑛𝑛=1 . One 

could also express the area as 𝐴𝐴 = ½∑ 𝑟𝑟𝑛𝑛−1𝑟𝑟𝑛𝑛 sin(∆𝜃𝜃)𝑁𝑁
𝑛𝑛=1 . In these equations, 𝑟𝑟0 = 𝑟𝑟𝑁𝑁 and 𝑟𝑟𝑁𝑁+1 = 𝑟𝑟1. 

Equating to zero the derivative with respect to 𝑟𝑟𝑛𝑛 of the composite function 𝐴𝐴 + 𝜆𝜆𝜆𝜆, we arrive at 

 𝜕𝜕𝑟𝑟𝑛𝑛𝐴𝐴 + 𝜆𝜆𝜕𝜕𝑟𝑟𝑛𝑛𝑃𝑃 = ½(𝑟𝑟𝑛𝑛−1 + 𝑟𝑟𝑛𝑛+1) sin(∆𝜃𝜃) + 𝜆𝜆[𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑛𝑛−1 cos(∆𝜃𝜃)]
[𝑟𝑟𝑛𝑛−12 +𝑟𝑟𝑛𝑛2−2𝑟𝑟𝑛𝑛−1𝑟𝑟𝑛𝑛 cos(∆𝜃𝜃)]½ 

 + 𝜆𝜆[𝑟𝑟𝑛𝑛 − 𝑟𝑟𝑛𝑛+1 cos(∆𝜃𝜃)]
[𝑟𝑟𝑛𝑛2+𝑟𝑟𝑛𝑛+12 −2𝑟𝑟𝑛𝑛𝑟𝑟𝑛𝑛+1 cos(∆𝜃𝜃)]½ = 0,           (𝑛𝑛 = 1, 2,⋯ ,𝑁𝑁). (4) 

Here, we have 𝑁𝑁 coupled nonlinear algebraic equations that must be solved for 𝑟𝑟1, 𝑟𝑟2,⋯ , 𝑟𝑟𝑁𝑁 
as functions of 𝜆𝜆. This is not an easy problem; however, it is not difficult to observe that a 
legitimate solution to the above set of equations is 𝑟𝑟1 = 𝑟𝑟2 = ⋯ = 𝑟𝑟𝑁𝑁 = 𝑟𝑟, in which case, 
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 𝑟𝑟 sin(∆𝜃𝜃) + 2𝜆𝜆 sin(∆𝜃𝜃 2⁄ ) = 0     →      𝑟𝑟 = −𝜆𝜆 cos(∆𝜃𝜃 2⁄ )⁄ . (5) 
Forcing the constraint now yields 

 𝑃𝑃 = ∑ �𝑟𝑟𝑛𝑛−12 + 𝑟𝑟𝑛𝑛2 − 2𝑟𝑟𝑛𝑛−1𝑟𝑟𝑛𝑛 cos(∆𝜃𝜃)𝑁𝑁
𝑛𝑛=1 = 2𝑁𝑁𝑁𝑁 sin(∆𝜃𝜃 2⁄ ) = −2𝑁𝑁𝑁𝑁 tan(∆𝜃𝜃 2⁄ ) = 𝑃𝑃0. (6) 

Recalling that ∆𝜃𝜃 is chosen to be a small angle, we will have 2𝑁𝑁 tan(∆𝜃𝜃 2⁄ ) ≅ 𝑁𝑁∆𝜃𝜃 = 2𝜋𝜋, 
and, therefore, 𝜆𝜆 = −𝑃𝑃0 2𝜋𝜋⁄ . Upon substituting into Eq.(5) and noting that cos(∆𝜃𝜃 2⁄ ) ≅ 1, we 
finally arrive at 𝑟𝑟1 = 𝑟𝑟2 = ⋯ = 𝑟𝑟𝑁𝑁 = 𝑟𝑟 = 𝑃𝑃0 2𝜋𝜋⁄ . The maximized area is subsequently found to be 

 𝐴𝐴 = ½∑ 𝑟𝑟𝑛𝑛−1𝑟𝑟𝑛𝑛 sin(∆𝜃𝜃)𝑁𝑁
𝑛𝑛=1 ≅ ½𝑟𝑟2 ∑ ∆𝜃𝜃𝑁𝑁

𝑛𝑛=1 = 𝜋𝜋𝑟𝑟2. (7) 

 


