Problem 3) a) The particular solution is zero because $\delta(t)=0$ for $t>0$. The homogeneous solution for $t>0$ is taken to be $z(t)=A e^{\eta t}$. Substitution into the differential equation yields

$$
\begin{equation*}
A \eta^{2} e^{\eta t}+\gamma A \eta e^{\eta t}+\omega_{0}^{2} A e^{\eta t}=0 \rightarrow \eta^{2}+\gamma \eta+\omega_{0}^{2}=0 \rightarrow \eta_{1,2}=-1 / 2 \gamma \pm \mathrm{i} \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}} \tag{1}
\end{equation*}
$$

The solution for $t<0$ is $z(t)=0$; for $t>0$ it is $z(t)=A e^{\eta_{1} t}+B e^{\eta_{2} t}$. The solution must be continuous at $t=0$, which necessitates that $A+B=0$. As for the derivative of $z(t)$, it must jump at $t=0$, so that the second derivative $z^{\prime \prime}(t)$ becomes a delta-function at $t=0$ to match the delta-function appearing on the right-hand side of the differential equation. The jump of $z^{\prime}(t)$ at $t=0$ is equal to $A \eta_{1}+B \eta_{2}$, which makes $z^{\prime \prime}(t)$ on the left-hand side equal to $\left(A \eta_{1}+B \eta_{2}\right) \delta(t)$. Equating this to the right-hand side now yields $A \eta_{1}+B \eta_{2}=f_{0} / \mathrm{m}$. Therefore,

$$
\begin{equation*}
A=-B=f_{0} /\left[m\left(\eta_{1}-\eta_{2}\right)\right]=f_{0} /\left(2 \mathrm{i} m \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}}\right) \tag{2}
\end{equation*}
$$

Substituting for A and B into the solution for $t>0$, and introducing step (t) to incorporate the solution for $t<0$, now yields the complete solution of the differential equation, as follows:

$$
\begin{equation*}
z(t)=f_{0} \operatorname{step}(t) e^{-1 / 2 \gamma t}\left[\exp \left(\mathrm{i} \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}} t\right)-\exp \left(-\mathrm{i} \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}} t\right)\right] /\left(2 \mathrm{i} m \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}}\right) \tag{3}
\end{equation*}
$$

This solution is readily simplified as

$$
\begin{equation*}
z(t)=\left(f_{0} / m\right) \operatorname{step}(t) e^{-1 / 2 \gamma t} \sin \left(\sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}} t\right) / \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}} \tag{4}
\end{equation*}
$$

b) Using $z(t)=\int_{-\infty}^{\infty} Z(s) e^{\mathrm{i} 2 \pi s t} \mathrm{~d} s$ and $\delta(t)=\int_{-\infty}^{\infty} e^{\mathrm{i} 2 \pi s t} \mathrm{~d} s$, we take the equation of motion to the Fourier domain, arriving at

$$
\begin{equation*}
(\mathrm{i} 2 \pi s)^{2} Z(s)+\gamma(\mathrm{i} 2 \pi s) Z(s)+\omega_{0}^{2} Z(s)=f_{0} / m \tag{5}
\end{equation*}
$$

The above equation is readily solved for $Z(s)$, yielding

$$
\begin{equation*}
Z(s)=\frac{f_{0} / m}{-4 \pi^{2} s^{2}+\mathrm{i} 2 \pi \gamma s+\omega_{0}^{2}}=-\left(\frac{f_{0}}{4 \pi^{2} m}\right) \frac{1}{s^{2}-\mathrm{i}(\gamma / 2 \pi) s-\left(\omega_{0} / 2 \pi\right)^{2}}=-\left(\frac{f_{0}}{4 \pi^{2} m}\right) \frac{1}{\left(s-\mathrm{s}_{1}\right)\left(s-\mathrm{s}_{2}\right)}, \tag{6}
\end{equation*}
$$

where $s_{1,2}=\left(\pm \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}}+1 / 2 \mathrm{i} \gamma\right) / 2 \pi$. The inverse Fourier transform of $Z(s)$ is given by

$$
\begin{equation*}
z(t)=\int_{-\infty}^{\infty} Z(s) e^{\mathrm{i} 2 \pi s t} \mathrm{~d} s=-\left(\frac{f_{0}}{4 \pi^{2} m}\right) \int_{-\infty}^{\infty} \frac{e^{\mathrm{i} 2 \pi s t}}{\left(s-s_{1}\right)\left(s-s_{2}\right)} \mathrm{d} s \tag{7}
\end{equation*}
$$

Both poles s_{1} and s_{2} of the integrand are in the upper-half of the complex plane. For $t<0$, the integration contour must be closed with a large semi-circle in the lower half-plane, where Jordan's lemma applies (because $e^{\mathrm{i} 2 \pi s t} \rightarrow 0$ on the large semi-circle in the lower half-plane). Consequently, $z(t)=0$ for $t<0$. For $t>0$, the integration contour must be closed with a large semi-circle in the upper half-plane, where $e^{i 2 \pi s t} \rightarrow 0$ and Jordan's lemma applies once again. The value of the integral will then be i 2π times the sum of the residues at s_{1} and s_{2}; that is,

$$
\begin{equation*}
z(t)=-\left(\frac{f_{0}}{4 \pi^{2} m}\right)(\mathrm{i} 2 \pi)\left(\frac{e^{\mathrm{i} 2 \pi s_{1} t}}{s_{1}-s_{2}}+\frac{e^{\mathrm{i} 2 \pi s_{2} t}}{s_{2}-s_{1}}\right)=-\left(\frac{\mathrm{i} f_{0}}{2 \pi m}\right)\left(\frac{e^{\mathrm{i} 2 \pi s_{1} t}-e^{\mathrm{i} 2 \pi s_{2} t}}{s_{1}-s_{2}}\right) . \tag{8}
\end{equation*}
$$

Further simplification of this result followed by the introduction of $\operatorname{step}(t)$ in order to incorporate the solution for $t<0$, finally yields

$$
\begin{equation*}
z(t)=\left(f_{0} / m\right) \operatorname{step}(t) e^{-1 / 2 \gamma t} \sin \left(\sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}} t\right) / \sqrt{\omega_{0}^{2}-1 / 4 \gamma^{2}} \tag{9}
\end{equation*}
$$

This is the same solution as obtained in part (a), Eq.(4), using the conventional method.

Digression 1. To confirm that the solution obtained for $z(t)$ does in fact satisfy the original differential equation, we begin by evaluating the first and second derivatives of $z(t)$, namely,

$$
\begin{gather*}
z(t)=\left(f_{0} / m \sqrt{\cdots}\right) \operatorname{step}(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t) \tag{10}\\
z^{\prime}(t)=\left(f_{0} / m \sqrt{\cdots}\right)\left[\delta(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)-1 / 2 \gamma \operatorname{step}(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)\right. \\
\left.+\sqrt{\cdots} \operatorname{step}(t) e^{-1 / 2 \gamma t} \cos (\sqrt{\cdots} t)\right] \tag{11}\\
z^{\prime \prime}(t)=\left(f_{0} / m \sqrt{\cdots}\right)\left[\delta^{\prime}(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)-1 / 2 \gamma \delta(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)+\sqrt{\cdots} \delta(t) e^{-1 / 2 \gamma t} \cos (\sqrt{\cdots} t)\right. \\
-1 / 2 \gamma \delta(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)+1 / 4 \gamma^{2} \operatorname{step}(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)-1 / 2 \sqrt{\cdots} \gamma \operatorname{step}(t) e^{-1 / 2 \gamma t} \cos (\sqrt{\cdots} t) \\
\left.+\sqrt{\cdots} \delta(t) e^{-1 / 2 \gamma t} \cos (\sqrt{\cdots} t)-1 / 2 \gamma \sqrt{\cdots} \operatorname{step}(t) e^{-1 / 2 \gamma t} \cos (\sqrt{\cdots} t)-(\sqrt{\cdots})^{2} \operatorname{step}(t) e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)\right] . \tag{12}
\end{gather*}
$$

The governing differential equation may thus be written as

$$
\begin{equation*}
z^{\prime \prime}(t)+\gamma z^{\prime}(t)+\omega_{0}^{2} z(t)=\left(f_{0} / m \sqrt{\cdots}\right)\left[e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t) \delta^{\prime}(t)+2 \sqrt{\cdots} e^{-1 / 2 \gamma t} \cos (\sqrt{\cdots} t) \delta(t)\right] \tag{13}
\end{equation*}
$$

Recalling that the sifting properties of $\delta(t)$ and $\delta^{\prime}(t)$ acting on the function $f(t) g(t)$ are given by

$$
\int_{-\infty}^{\infty} f(t) g(t) \delta(t) \mathrm{d} t=f(0) g(0) \quad \text { and } \quad \int_{-\infty}^{\infty} f(t) g(t) \delta^{\prime}(t) \mathrm{d} t=-\left[f^{\prime}(0) g(0)+f(0) g^{\prime}(0)\right]
$$

we conclude that $g(t) \delta^{\prime}(t)=g(0) \delta^{\prime}(t)-g^{\prime}(0) \delta(t)$. Therefore, the first term on the righthand side of Eq.(13) becomes

$$
\begin{align*}
e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t) & \delta^{\prime}(t)=\left.e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)\right|_{t=0} \delta^{\prime}(t) \\
& \quad-\left[-1 / 2 \gamma e^{-1 / 2 \gamma t} \sin (\sqrt{\cdots} t)+\sqrt{\cdots} e^{-1 / 2 \gamma t} \cos (\sqrt{\cdots} t)\right]_{t=0} \delta(t)=-\sqrt{\cdots} \delta(t) . \tag{14}
\end{align*}
$$

Substitution from Eq.(14) into Eq.(13) finally yields the original differential equation, as follows:

$$
\begin{equation*}
z^{\prime \prime}(t)+\gamma z^{\prime}(t)+\omega_{0}^{2} z(t)=\left(f_{0} / m \sqrt{\cdots}\right)[-\sqrt{\cdots} \delta(t)+2 \sqrt{\cdots} \delta(t)]=\left(f_{0} / m\right) \delta(t) . \tag{15}
\end{equation*}
$$

Digression 2. A general approach to solving the mass-and-spring problem when $\delta(t) \mathrm{and} /$ or its derivative $\delta^{\prime}(t)$ appear on the right-hand side of the equation of motion is to proceed as follows:

$$
\begin{align*}
& z(t)=\operatorname{step}(t)\left(A e^{\eta_{1} t}+B e^{\eta_{2} t}\right) . \tag{16}\\
& z^{\prime}(t)=\delta(t)\left(A e^{\eta_{1} t}+B e^{\eta_{2} t}\right)+\operatorname{step}(t)\left(A \eta_{1} e^{\eta_{1} t}+B \eta_{2} e^{\eta_{2} t}\right) . \tag{17}\\
& z^{\prime \prime}(t)=\delta^{\prime}(t)\left(A e^{\eta_{1} t}+B e^{\eta_{2} t}\right)+2 \delta(t)\left(A \eta_{1} e^{\eta_{1} t}+B \eta_{2} e^{\eta_{2} t}\right)+\operatorname{step}(t)\left(A \eta_{1}^{2} e^{\eta_{1} t}+B \eta_{2}^{2} e^{\eta_{2} t}\right) \\
& \quad \text { invoke } g(t) \delta^{\prime}(t)=g(0) \delta^{\prime}(t)-g^{\prime}(0) \delta(t) ; \text { also, } g(t) \delta(t)=g(0) \delta(t) \\
& \quad \stackrel{\downarrow}{=} \delta^{\prime}(t)(A+B)+\delta(t)\left(A \eta_{1}+B \eta_{2}\right)+\operatorname{step}(t)\left(A \eta_{1}^{2} e^{\eta_{1} t}+B \eta_{2}^{2} e^{\eta_{2} t}\right) . \tag{18}
\end{align*}
$$

Substitution into the equation of motion yields

$$
\begin{align*}
z^{\prime \prime}(t)+\gamma z^{\prime}(t)+\omega_{0}^{2} z(t)= & (A+B)\left[\delta^{\prime}(t)+\gamma \delta(t)\right]+\left(A \eta_{1}+B \eta_{2}\right) \delta(t) \\
& +\operatorname{step}(t)\left[A\left(\underline{\eta_{1}^{2}+\gamma \eta_{1}+\omega_{0}^{2}}\right) e^{0} e_{1} t+B\left(\underline{\eta_{2}^{2}+\gamma \eta_{2}+\omega_{0}^{2}}\right) e^{0} \eta_{2} t\right. \tag{19}
\end{align*} .
$$

When the right-hand side of the differential equation is $\left(f_{0} / m\right) \delta(t)$, we must set $A+B=0$ to eliminate $\delta^{\prime}(t)$ from the left-hand side, then set $A \eta_{1}+B \eta_{2}=A\left(\eta_{1}-\eta_{2}\right)=f_{0} / m$ in order to satisfy the equation. In contrast, if the term on the right-hand side happens to be $\left(f_{0} / m\right) \delta^{\prime}(t)$, then we set $A+B=f_{0} / m$ and $(A+B) \gamma+A \eta_{1}+B \eta_{2}=0$ to once again satisfy the equation of motion. If it so happens that the right-hand side of the governing equation contains the second derivative $\delta^{\prime \prime}(t)$ of $\delta(t)$, we must consider adding the new term $C \delta(t)$ to the postulated solution $z(t)$ appearing in Eq.(16), where C is another constant (similar to A and B) that must be determined by balancing the right- and left-hand sides of the differential equation, and so on.

