Problem 3) a) The particular solution is zero because $\delta(t) = 0$ for t > 0. The homogeneous solution for t > 0 is taken to be $z(t) = Ae^{\eta t}$. Substitution into the differential equation yields

$$A\eta^{2}e^{\eta t} + \gamma A\eta e^{\eta t} + \omega_{0}^{2}Ae^{\eta t} = 0 \rightarrow \eta^{2} + \gamma \eta + \omega_{0}^{2} = 0 \rightarrow \eta_{1,2} = -\frac{1}{2}\gamma \pm i\sqrt{\omega_{0}^{2} - \frac{1}{4}\gamma^{2}}.$$
 (1)

The solution for t < 0 is z(t) = 0; for t > 0 it is $z(t) = Ae^{\eta_1 t} + Be^{\eta_2 t}$. The solution must be continuous at t = 0, which necessitates that A + B = 0. As for the derivative of z(t), it must jump at t = 0, so that the second derivative z''(t) becomes a delta-function at t = 0 to match the delta-function appearing on the right-hand side of the differential equation. The jump of z'(t) at t = 0 is equal to $A\eta_1 + B\eta_2$, which makes z''(t) on the left-hand side equal to $(A\eta_1 + B\eta_2)\delta(t)$. Equating this to the right-hand side now yields $A\eta_1 + B\eta_2 = f_0/m$. Therefore,

$$A = -B = f_0 / [m(\eta_1 - \eta_2)] = f_0 / (2im\sqrt{\omega_0^2 - \frac{1}{4}\gamma^2}).$$
(2)

Substituting for A and B into the solution for t > 0, and introducing step(t) to incorporate the solution for t < 0, now yields the complete solution of the differential equation, as follows:

$$z(t) = f_0 \operatorname{step}(t) e^{-\frac{1}{2}\gamma t} \left[\exp(i\sqrt{\omega_0^2 - \frac{1}{4}\gamma^2}t) - \exp(-i\sqrt{\omega_0^2 - \frac{1}{4}\gamma^2}t) \right] / (2im\sqrt{\omega_0^2 - \frac{1}{4}\gamma^2}).$$
(3)

This solution is readily simplified as

$$z(t) = (f_0/m) \operatorname{step}(t) e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\omega_0^2 - \frac{1}{4}\gamma^2} t) / \sqrt{\omega_0^2 - \frac{1}{4}\gamma^2}.$$
 (4)

b) Using $z(t) = \int_{-\infty}^{\infty} Z(s)e^{i2\pi st} ds$ and $\delta(t) = \int_{-\infty}^{\infty} e^{i2\pi st} ds$, we take the equation of motion to the Fourier domain, arriving at

$$(i2\pi s)^2 Z(s) + \gamma (i2\pi s) Z(s) + \omega_0^2 Z(s) = f_0/m.$$
(5)

The above equation is readily solved for Z(s), yielding

$$Z(s) = \frac{f_0/m}{-4\pi^2 s^2 + i2\pi\gamma s + \omega_0^2} = -\left(\frac{f_0}{4\pi^2 m}\right) \frac{1}{s^2 - i(\gamma/2\pi)s - (\omega_0/2\pi)^2} = -\left(\frac{f_0}{4\pi^2 m}\right) \frac{1}{(s-s_1)(s-s_2)},$$
 (6)

where $s_{1,2} = (\pm \sqrt{\omega_0^2 - \frac{1}{4}\gamma^2} + \frac{1}{2}i\gamma)/2\pi$. The inverse Fourier transform of Z(s) is given by

$$z(t) = \int_{-\infty}^{\infty} Z(s) e^{i2\pi st} ds = -\left(\frac{f_0}{4\pi^2 m}\right) \int_{-\infty}^{\infty} \frac{e^{i2\pi st}}{(s-s_1)(s-s_2)} ds.$$
 (7)

Both poles s_1 and s_2 of the integrand are in the upper-half of the complex plane. For t < 0, the integration contour must be closed with a large semi-circle in the lower half-plane, where Jordan's lemma applies (because $e^{i2\pi st} \rightarrow 0$ on the large semi-circle in the lower half-plane). Consequently, z(t) = 0 for t < 0. For t > 0, the integration contour must be closed with a large semi-circle in the upper half-plane, where $e^{i2\pi st} \rightarrow 0$ and Jordan's lemma applies once again. The value of the integral will then be $i2\pi$ times the sum of the residues at s_1 and s_2 ; that is,

$$z(t) = -\left(\frac{f_0}{4\pi^2 m}\right) (i2\pi) \left(\frac{e^{i2\pi s_1 t}}{s_1 - s_2} + \frac{e^{i2\pi s_2 t}}{s_2 - s_1}\right) = -\left(\frac{if_0}{2\pi m}\right) \left(\frac{e^{i2\pi s_1 t} - e^{i2\pi s_2 t}}{s_1 - s_2}\right).$$
(8)

Further simplification of this result followed by the introduction of step(t) in order to incorporate the solution for t < 0, finally yields

$$z(t) = (f_0/m) \operatorname{step}(t) e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\omega_0^2 - \frac{1}{4}\gamma^2} t) / \sqrt{\omega_0^2 - \frac{1}{4}\gamma^2}.$$
 (9)

This is the same solution as obtained in part (a), Eq.(4), using the conventional method.

Digression 1. To confirm that the solution obtained for z(t) does in fact satisfy the original differential equation, we begin by evaluating the first and second derivatives of z(t), namely,

$$z(t) = (f_0/m\sqrt{\cdots})\operatorname{step}(t)e^{-\frac{1}{2}\gamma t}\sin(\sqrt{\cdots}t).$$
(10)

$$z'(t) = (f_0/m\sqrt{\cdots}) \left[\delta(t)e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots}t) - \frac{1}{2}\gamma \operatorname{step}(t)e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots}t) + \sqrt{\cdots}\operatorname{step}(t)e^{-\frac{1}{2}\gamma t} \cos(\sqrt{\cdots}t) \right].$$
(11)

$$z''(t) = (f_0/m\sqrt{\cdots}) \left[\delta'(t)e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots}t) - \frac{1}{2}\gamma \delta(t)e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots}t) + \sqrt{\cdots}\delta(t)e^{-\frac{1}{2}\gamma t} \cos(\sqrt{\cdots}t) - \frac{1}{2}\gamma \delta(t)e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots}t) + \frac{1}{4}\gamma^2 \operatorname{step}(t)e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots}t) - \frac{1}{2}\sqrt{\cdots}\gamma \operatorname{step}(t)e^{-\frac{1}{2}\gamma t} \cos(\sqrt{\cdots}t) + \sqrt{\cdots}\delta(t)e^{-\frac{1}{2}\gamma t} \cos(\sqrt{\cdots}t) - \frac{1}{2}\gamma\sqrt{\cdots}\operatorname{step}(t)e^{-\frac{1}{2}\gamma t} \cos(\sqrt{\cdots}t) - \frac{1}{2}\gamma\sqrt{\cdots}\operatorname{step}(t)e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots}t) \right].$$

$$(12)$$

The governing differential equation may thus be written as

$$z''(t) + \gamma z'(t) + \omega_0^2 z(t) = (f_0 / m \sqrt{\cdots}) \left[e^{-\frac{1}{2}\gamma t} \sin(\sqrt{\cdots} t) \,\delta'(t) + 2\sqrt{\cdots} e^{-\frac{1}{2}\gamma t} \cos(\sqrt{\cdots} t) \,\delta(t) \right].$$
(13)

Recalling that the sifting properties of $\delta(t)$ and $\delta'(t)$ acting on the function f(t)g(t) are given by

$$\int_{-\infty}^{\infty} f(t)g(t)\delta(t)dt = f(0)g(0) \text{ and } \int_{-\infty}^{\infty} f(t)g(t)\delta'(t)dt = -[f'(0)g(0) + f(0)g'(0)],$$

we conclude that $g(t)\delta'(t) = g(0)\delta'(t) - g'(0)\delta(t)$. Therefore, the first term on the right-hand side of Eq.(13) becomes

$$e^{-\frac{1}{2}\gamma t}\sin(\sqrt{\cdots}t)\,\delta'(t) = e^{-\frac{1}{2}\gamma t}\sin(\sqrt{\cdots}t)\big|_{t=0}\delta'(t) \\ -\left[-\frac{1}{2}\gamma e^{-\frac{1}{2}\gamma t}\sin(\sqrt{\cdots}t) + \sqrt{\cdots}e^{-\frac{1}{2}\gamma t}\cos(\sqrt{\cdots}t)\right]_{t=0}\delta(t) = -\sqrt{\cdots}\delta(t).$$
(14)

Substitution from Eq.(14) into Eq.(13) finally yields the original differential equation, as follows:

$$z''(t) + \gamma z'(t) + \omega_0^2 z(t) = (f_0/m\sqrt{\cdots}) \left[-\sqrt{\cdots} \delta(t) + 2\sqrt{\cdots} \delta(t) \right] = (f_0/m)\delta(t).$$
(15)

Digression 2. A general approach to solving the mass-and-spring problem when $\delta(t)$ and/or its derivative $\delta'(t)$ appear on the right-hand side of the equation of motion is to proceed as follows:

$$z(t) = \text{step}(t)(Ae^{\eta_1 t} + Be^{\eta_2 t}).$$
(16)

$$z'(t) = \delta(t)(Ae^{\eta_1 t} + Be^{\eta_2 t}) + \operatorname{step}(t)(A\eta_1 e^{\eta_1 t} + B\eta_2 e^{\eta_2 t}).$$
(17)

$$\stackrel{!}{=} \delta'(t)(A+B) + \delta(t)(A\eta_1 + B\eta_2) + \operatorname{step}(t)(A\eta_1^2 e^{\eta_1 t} + B\eta_2^2 e^{\eta_2 t}).$$
(18)

Substitution into the equation of motion yields

$$z''(t) + \gamma z'(t) + \omega_0^2 z(t) = (A + B)[\delta'(t) + \gamma \delta(t)] + (A\eta_1 + B\eta_2)\delta(t) + \operatorname{step}(t)[A(\eta_1^2 + \gamma \eta_1 + \omega_0^2)e^{\eta_1 t} + B(\eta_2^2 + \gamma \eta_2 + \omega_0^2)e^{\eta_2 t}].$$
(19)

When the right-hand side of the differential equation is $(f_0/m)\delta(t)$, we must set A + B = 0to eliminate $\delta'(t)$ from the left-hand side, then set $A\eta_1 + B\eta_2 = A(\eta_1 - \eta_2) = f_0/m$ in order to satisfy the equation. In contrast, if the term on the right-hand side happens to be $(f_0/m)\delta'(t)$, then we set $A + B = f_0/m$ and $(A + B)\gamma + A\eta_1 + B\eta_2 = 0$ to once again satisfy the equation of motion. If it so happens that the right-hand side of the governing equation contains the second derivative $\delta''(t)$ of $\delta(t)$, we must consider adding the new term $C\delta(t)$ to the postulated solution z(t) appearing in Eq.(16), where C is another constant (similar to A and B) that must be determined by balancing the right- and left-hand sides of the differential equation, and so on.