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Opti 403A/503A Final Exam Solutions Spring 2024 
 
Problem 3) a) The particular solution is zero because 𝛿𝛿(𝑡𝑡) = 0 for 𝑡𝑡 > 0. The homogeneous 
solution for 𝑡𝑡 > 0 is taken to be 𝑧𝑧(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝜂𝜂𝜂𝜂. Substitution into the differential equation yields 

 𝐴𝐴𝜂𝜂2𝑒𝑒𝜂𝜂𝜂𝜂 + 𝛾𝛾𝛾𝛾𝛾𝛾𝑒𝑒𝜂𝜂𝜂𝜂 + 𝜔𝜔0
2𝐴𝐴𝑒𝑒𝜂𝜂𝜂𝜂 = 0 →  𝜂𝜂2 + 𝛾𝛾𝛾𝛾 + 𝜔𝜔0

2 = 0 →   𝜂𝜂1,2 = −½𝛾𝛾 ± i�𝜔𝜔0
2 − ¼𝛾𝛾2. (1) 

The solution for 𝑡𝑡 < 0 is 𝑧𝑧(𝑡𝑡) = 0; for 𝑡𝑡 > 0 it is 𝑧𝑧(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝑒𝑒𝜂𝜂2𝑡𝑡. The solution must 
be continuous at 𝑡𝑡 = 0, which necessitates that 𝐴𝐴 + 𝐵𝐵 = 0. As for the derivative of 𝑧𝑧(𝑡𝑡), it must 
jump at 𝑡𝑡 = 0, so that the second derivative 𝑧𝑧″(𝑡𝑡) becomes a delta-function at 𝑡𝑡 = 0 to match the 
delta-function appearing on the right-hand side of the differential equation. The jump of 𝑧𝑧′(𝑡𝑡) at 
𝑡𝑡 = 0 is equal to 𝐴𝐴𝜂𝜂1 + 𝐵𝐵𝜂𝜂2, which makes 𝑧𝑧″(𝑡𝑡) on the left-hand side equal to (𝐴𝐴𝜂𝜂1 + 𝐵𝐵𝜂𝜂2)𝛿𝛿(𝑡𝑡). 
Equating this to the right-hand side now yields 𝐴𝐴𝜂𝜂1 + 𝐵𝐵𝜂𝜂2 = 𝑓𝑓0 𝑚𝑚⁄ . Therefore, 

 𝐴𝐴 = −𝐵𝐵 = 𝑓𝑓0 [𝑚𝑚(𝜂𝜂1 − 𝜂𝜂2)]⁄ = 𝑓𝑓0 (2i𝑚𝑚�𝜔𝜔0
2 − ¼𝛾𝛾2)⁄ . (2) 

Substituting for 𝐴𝐴 and 𝐵𝐵 into the solution for 𝑡𝑡 > 0, and introducing step(𝑡𝑡) to incorporate 
the solution for 𝑡𝑡 < 0, now yields the complete solution of the differential equation, as follows: 

 𝑧𝑧(𝑡𝑡) = 𝑓𝑓0step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 [exp(i�𝜔𝜔0
2 − ¼𝛾𝛾2𝑡𝑡) − exp(−i�𝜔𝜔0

2 − ¼𝛾𝛾2𝑡𝑡)] (2i𝑚𝑚�𝜔𝜔0
2 − ¼𝛾𝛾2)� . (3) 

This solution is readily simplified as 

 𝑧𝑧(𝑡𝑡) = (𝑓𝑓0 𝑚𝑚⁄ )step(𝑡𝑡) 𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(�𝜔𝜔0
2 − ¼𝛾𝛾2𝑡𝑡) �𝜔𝜔0

2 − ¼𝛾𝛾2� . (4) 

b) Using 𝑧𝑧(𝑡𝑡) = ∫ 𝑍𝑍(𝑠𝑠)𝑒𝑒i2𝜋𝜋𝜋𝜋𝜋𝜋d𝑠𝑠∞

−∞
 and 𝛿𝛿(𝑡𝑡) = ∫ 𝑒𝑒i2𝜋𝜋𝜋𝜋𝜋𝜋d𝑠𝑠∞

−∞
, we take the equation of motion to 

the Fourier domain, arriving at 

 (i2𝜋𝜋𝜋𝜋)2𝑍𝑍(𝑠𝑠) + 𝛾𝛾(i2𝜋𝜋𝜋𝜋)𝑍𝑍(𝑠𝑠) + 𝜔𝜔0
2𝑍𝑍(𝑠𝑠) = 𝑓𝑓0 𝑚𝑚⁄ . (5) 

The above equation is readily solved for 𝑍𝑍(𝑠𝑠), yielding 

 𝑍𝑍(𝑠𝑠) = 𝑓𝑓0 𝑚𝑚⁄
−4𝜋𝜋2𝑠𝑠2 + i2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝜔𝜔0

2 = −� 𝑓𝑓0
4𝜋𝜋2𝑚𝑚

� 1
𝑠𝑠2 − i(𝛾𝛾 2𝜋𝜋⁄ )𝑠𝑠 − (𝜔𝜔0 2𝜋𝜋⁄ )2 = − � 𝑓𝑓0

4𝜋𝜋2𝑚𝑚
� 1

(𝑠𝑠−s1)(𝑠𝑠−s2) , (6) 

where 𝑠𝑠1,2 = �±�𝜔𝜔0
2 − ¼𝛾𝛾2 + ½i𝛾𝛾� 2𝜋𝜋⁄ . The inverse Fourier transform of 𝑍𝑍(𝑠𝑠) is given by 

 𝑧𝑧(𝑡𝑡) = ∫ 𝑍𝑍(𝑠𝑠)𝑒𝑒i2𝜋𝜋𝜋𝜋𝜋𝜋d𝑠𝑠∞

−∞
= −� 𝑓𝑓0

4𝜋𝜋2𝑚𝑚
�� 𝑒𝑒i2𝜋𝜋𝜋𝜋𝜋𝜋

(𝑠𝑠−s1)(𝑠𝑠−s2) d𝑠𝑠
∞

−∞
. (7) 

Both poles 𝑠𝑠1 and 𝑠𝑠2 of the integrand are in the upper-half of the complex plane. For 𝑡𝑡 < 0, 
the integration contour must be closed with a large semi-circle in the lower half-plane, where 
Jordan’s lemma applies (because 𝑒𝑒i2𝜋𝜋𝜋𝜋𝜋𝜋 → 0 on the large semi-circle in the lower half-plane). 
Consequently, 𝑧𝑧(𝑡𝑡) = 0 for 𝑡𝑡 < 0. For 𝑡𝑡 > 0, the integration contour must be closed with a large 
semi-circle in the upper half-plane, where 𝑒𝑒i2𝜋𝜋𝜋𝜋𝜋𝜋 → 0 and Jordan’s lemma applies once again. 
The value of the integral will then be i2𝜋𝜋 times the sum of the residues at 𝑠𝑠1 and 𝑠𝑠2; that is, 

 𝑧𝑧(𝑡𝑡) = −� 𝑓𝑓0
4𝜋𝜋2𝑚𝑚

� (i2𝜋𝜋) �𝑒𝑒
i2𝜋𝜋𝑠𝑠1𝑡𝑡

𝑠𝑠1−s2
+ 𝑒𝑒i2𝜋𝜋𝑠𝑠2𝑡𝑡

𝑠𝑠2−s1
� = −� i𝑓𝑓0

2𝜋𝜋𝜋𝜋
� �𝑒𝑒

i2𝜋𝜋𝑠𝑠1𝑡𝑡 − 𝑒𝑒i2𝜋𝜋𝑠𝑠2𝑡𝑡

𝑠𝑠1−s2
�. (8) 

Further simplification of this result followed by the introduction of step(𝑡𝑡) in order to 
incorporate the solution for 𝑡𝑡 < 0, finally yields 

 𝑧𝑧(𝑡𝑡) = (𝑓𝑓0 𝑚𝑚⁄ )step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin��𝜔𝜔0
2 − ¼𝛾𝛾2𝑡𝑡� �𝜔𝜔0

2 − ¼𝛾𝛾2� . (9) 
This is the same solution as obtained in part (a), Eq.(4), using the conventional method. 
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Digression 1. To confirm that the solution obtained for 𝑧𝑧(𝑡𝑡) does in fact satisfy the original 
differential equation, we begin by evaluating the first and second derivatives of 𝑧𝑧(𝑡𝑡), namely, 

 𝑧𝑧(𝑡𝑡) = (𝑓𝑓0 𝑚𝑚√⋯⁄ )step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡). (10) 

 𝑧𝑧′(𝑡𝑡) = (𝑓𝑓0 𝑚𝑚√⋯⁄ )�𝛿𝛿(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡) − ½𝛾𝛾 step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡) 

 +√⋯step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 cos(√⋯𝑡𝑡)�. (11) 

 𝑧𝑧″(𝑡𝑡) = (𝑓𝑓0 𝑚𝑚√⋯⁄ )�𝛿𝛿′(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯ 𝑡𝑡) − ½𝛾𝛾𝛾𝛾(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯ 𝑡𝑡) + √⋯𝛿𝛿(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 cos(√⋯ 𝑡𝑡) 

 −½𝛾𝛾 𝛿𝛿(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯ 𝑡𝑡) + ¼𝛾𝛾2 step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡) − ½√⋯𝛾𝛾 step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 cos(√⋯𝑡𝑡) 

 +√⋯  𝛿𝛿(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 cos(√⋯ 𝑡𝑡)−½𝛾𝛾√⋯step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 cos(√⋯𝑡𝑡) − (√⋯)2 step(𝑡𝑡)𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡)�. 
 (12) 
The governing differential equation may thus be written as 

 𝑧𝑧″(𝑡𝑡) + 𝛾𝛾𝑧𝑧′(𝑡𝑡) + 𝜔𝜔0
2𝑧𝑧(𝑡𝑡) = (𝑓𝑓0 𝑚𝑚√⋯⁄ )�𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡) 𝛿𝛿′(𝑡𝑡) + 2√⋯𝑒𝑒−½𝛾𝛾𝛾𝛾 cos(√⋯𝑡𝑡) 𝛿𝛿(𝑡𝑡)�. 

 (13) 

Recalling that the sifting properties of 𝛿𝛿(𝑡𝑡) and 𝛿𝛿′(𝑡𝑡) acting on the function 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡) are given by 

 ∫ 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝛿𝛿(𝑡𝑡)d𝑡𝑡∞

−∞
= 𝑓𝑓(0)𝑔𝑔(0) and ∫ 𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡)𝛿𝛿′(𝑡𝑡)d𝑡𝑡∞

−∞
= −[𝑓𝑓′(0)𝑔𝑔(0) + 𝑓𝑓(0)𝑔𝑔′(0)], 

we conclude that 𝑔𝑔(𝑡𝑡)𝛿𝛿′(𝑡𝑡) = 𝑔𝑔(0)𝛿𝛿′(𝑡𝑡) − 𝑔𝑔′(0)𝛿𝛿(𝑡𝑡). Therefore, the first term on the right-
hand side of Eq.(13) becomes 

 𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡) 𝛿𝛿′(𝑡𝑡) = 𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡)�
𝑡𝑡=0
𝛿𝛿′(𝑡𝑡) 

 −�−½𝛾𝛾𝑒𝑒−½𝛾𝛾𝛾𝛾 sin(√⋯𝑡𝑡) + √⋯𝑒𝑒−½𝛾𝛾𝛾𝛾 cos(√⋯𝑡𝑡)�
𝑡𝑡=0
𝛿𝛿(𝑡𝑡) = −√⋯𝛿𝛿(𝑡𝑡). (14) 

Substitution from Eq.(14) into Eq.(13) finally yields the original differential equation, as follows: 

 𝑧𝑧″(𝑡𝑡) + 𝛾𝛾𝑧𝑧′(𝑡𝑡) + 𝜔𝜔0
2𝑧𝑧(𝑡𝑡) = (𝑓𝑓0 𝑚𝑚√⋯⁄ )�−√⋯𝛿𝛿(𝑡𝑡) + 2√⋯𝛿𝛿(𝑡𝑡)� = (𝑓𝑓0 𝑚𝑚⁄ )𝛿𝛿(𝑡𝑡). (15) 

Digression 2. A general approach to solving the mass-and-spring problem when 𝛿𝛿(𝑡𝑡) and/or its 
derivative 𝛿𝛿′(𝑡𝑡) appear on the right-hand side of the equation of motion is to proceed as follows: 

 𝑧𝑧(𝑡𝑡) = step(𝑡𝑡)(𝐴𝐴𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝑒𝑒𝜂𝜂2𝑡𝑡). (16) 

 𝑧𝑧′(𝑡𝑡) = 𝛿𝛿(𝑡𝑡)(𝐴𝐴𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝑒𝑒𝜂𝜂2𝑡𝑡) + step(𝑡𝑡)(𝐴𝐴𝜂𝜂1𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝜂𝜂2𝑒𝑒𝜂𝜂2𝑡𝑡). (17) 

 𝑧𝑧″(𝑡𝑡) = 𝛿𝛿′(𝑡𝑡)(𝐴𝐴𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝑒𝑒𝜂𝜂2𝑡𝑡) + 2𝛿𝛿(𝑡𝑡)(𝐴𝐴𝜂𝜂1𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝜂𝜂2𝑒𝑒𝜂𝜂2𝑡𝑡) + step(𝑡𝑡)(𝐴𝐴𝜂𝜂12𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝜂𝜂22𝑒𝑒𝜂𝜂2𝑡𝑡) 

 = 𝛿𝛿′(𝑡𝑡)(𝐴𝐴 + 𝐵𝐵) + 𝛿𝛿(𝑡𝑡)(𝐴𝐴𝜂𝜂1 + 𝐵𝐵𝜂𝜂2) + step(𝑡𝑡)(𝐴𝐴𝜂𝜂12𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵𝜂𝜂22𝑒𝑒𝜂𝜂2𝑡𝑡). (18)  
Substitution into the equation of motion yields 

 𝑧𝑧″(𝑡𝑡) + 𝛾𝛾𝑧𝑧′(𝑡𝑡) + 𝜔𝜔0
2𝑧𝑧(𝑡𝑡) = (𝐴𝐴 + 𝐵𝐵)[𝛿𝛿′(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡)] + (𝐴𝐴𝜂𝜂1 + 𝐵𝐵𝜂𝜂2)𝛿𝛿(𝑡𝑡) 

 +step(𝑡𝑡)[𝐴𝐴(𝜂𝜂12 + 𝛾𝛾𝜂𝜂1 + 𝜔𝜔0
2)𝑒𝑒𝜂𝜂1𝑡𝑡 + 𝐵𝐵(𝜂𝜂22 + 𝛾𝛾𝜂𝜂2 + 𝜔𝜔0

2)𝑒𝑒𝜂𝜂2𝑡𝑡]. (19) 
0 0 

invoke 𝑔𝑔(𝑡𝑡)𝛿𝛿′(𝑡𝑡) = 𝑔𝑔(0)𝛿𝛿′(𝑡𝑡) − 𝑔𝑔′(0)𝛿𝛿(𝑡𝑡); also, 𝑔𝑔(𝑡𝑡)𝛿𝛿(𝑡𝑡) = 𝑔𝑔(0)𝛿𝛿(𝑡𝑡) 
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When the right-hand side of the differential equation is (𝑓𝑓0 𝑚𝑚⁄ )𝛿𝛿(𝑡𝑡), we must set 𝐴𝐴 + 𝐵𝐵 = 0 
to eliminate 𝛿𝛿′(𝑡𝑡) from the left-hand side, then set 𝐴𝐴𝜂𝜂1 + 𝐵𝐵𝜂𝜂2 = 𝐴𝐴(𝜂𝜂1 − 𝜂𝜂2) = 𝑓𝑓0 𝑚𝑚⁄  in order to 
satisfy the equation. In contrast, if the term on the right-hand side happens to be (𝑓𝑓0 𝑚𝑚⁄ )𝛿𝛿′(𝑡𝑡), 
then we set 𝐴𝐴 + 𝐵𝐵 = 𝑓𝑓0 𝑚𝑚⁄  and (𝐴𝐴 + 𝐵𝐵)𝛾𝛾 + 𝐴𝐴𝜂𝜂1 + 𝐵𝐵𝜂𝜂2 = 0 to once again satisfy the equation of 
motion. If it so happens that the right-hand side of the governing equation contains the second 
derivative 𝛿𝛿″(𝑡𝑡) of 𝛿𝛿(𝑡𝑡), we must consider adding the new term 𝐶𝐶𝐶𝐶(𝑡𝑡) to the postulated solution 
𝑧𝑧(𝑡𝑡) appearing in Eq.(16), where 𝐶𝐶 is another constant (similar to 𝐴𝐴 and 𝐵𝐵) that must be 
determined by balancing the right- and left-hand sides of the differential equation, and so on. 
 


