Problem 2) If $a=0, f(x)$ will be zero everywhere and, therefore, its Fourier transform will be $F(s)=0$. For nonzero values of a, the function $f(z)=2 a /\left(z^{2}+a^{2}\right)$ will have two first-order poles at $z_{1,2}= \pm \mathrm{i} a$ in the complex z-plane. We will have

$$
|f(z)|=\frac{2|a|}{|z-\mathrm{i} a||z+\mathrm{i} a|} .
$$

In the limit when $|z| \rightarrow \infty$, both $|z-\mathrm{i} a|$ and $|z+\mathrm{i} a|$ approach infinity, as can be inferred from figure (a) below. Consequently, $\lim _{|z| \rightarrow \infty}|f(z)|=0$ and the condition for Jordan's lemma is satisfied.

The Fourier integral $F(s)=\int_{-\infty}^{\infty} f(x) e^{-\mathrm{i} 2 \pi s x} \mathrm{~d} x$ should be evaluated in the upper-half plane when $s<0$, and in the lower half-plane when $s>0$. This is because, at $z=R e^{\mathrm{i} \varphi}$ on the circle of large radius R in figure (b), the Fourier kernel $\left|e^{-\mathrm{i} 2 \pi s z}\right|=\left|e^{-\mathrm{i} 2 \pi s R \cos \varphi} e^{2 \pi s R \sin \varphi}\right|=e^{2 \pi s R \sin \varphi}$ goes to zero on the upper semi-circle when $s<0$, and on the lower semi-circle when $s>0$. The only pole in the upper half-plane is at $z_{1}=\mathrm{i}|a|$ (first-order), where the residue of the integrand $2 a e^{-\mathrm{i} 2 \pi s z} /[(z-\mathrm{i}|a|)(z+\mathrm{i}|a|)]$ is found to be

$$
2 a e^{-\mathrm{i} 2 \pi s(\mathrm{i}|a|)} /(\mathrm{i}|a|+\mathrm{i}|a|)=-\mathrm{i} \operatorname{sign}(a) e^{2 \pi|a| s} \quad(s<0)
$$

In the lower half-plane, the only pole is at $z_{2}=-\mathrm{i}|a|$ (also first order). Here the residue of the integrand is

$$
2 a e^{-\mathrm{i} 2 \pi s(-\mathrm{i}|a|)} /(-\mathrm{i}|a|-\mathrm{i}|a|)=\mathrm{i} \operatorname{sign}(a) e^{-2 \pi|a| s} \quad(s>0)
$$

Considering that the contribution of the upper-half-plane residue to the overall integral must be multiplied by $\mathrm{i} 2 \pi$ (counterclockwise contour around $z_{1}=\mathrm{i}|a|$), and that of the lower-halfplane residue multiplied by $-\mathrm{i} 2 \pi$ (clockwise contour around $z_{2}=-\mathrm{i}|a|$), we finally arrive at

$$
F(s)=2 \pi \operatorname{sign}(a) e^{-2 \pi|a s|}
$$

Note that the area under $F(s)$ is $\int_{-\infty}^{\infty} 2 \pi \operatorname{sign}(a) e^{-2 \pi|a s|} \mathrm{d} s=4 \pi \operatorname{sign}(a) \int_{0}^{\infty} e^{-2 \pi|a| s} \mathrm{~d} s=$ $4 \pi \operatorname{sign}(a) /(2 \pi|a|)=2 / a$, in agreement with the value of the function $f(x)$ at $x=0$.

Digression: For $s=0$, the integration contour may be closed in either the upper half-plane or the lower-half plane, yielding $F(0)=2 \pi \operatorname{sign}(a)$. It is also possible in this case to directly evaluate the Fourier integral; that is, change of variable: $x=a y$; limits of the integral switch sign for negative a

$$
\begin{aligned}
& F(0)=\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} \frac{2 a \mathrm{~d} x}{x^{2}+a^{2}}=2 a^{2} \int_{\mp \infty}^{ \pm \infty} \frac{\mathrm{d} y}{(a y)^{2}+a^{2}}=2 \int_{\mp \infty}^{ \pm \infty} \frac{\mathrm{d} y}{y^{2}+1}=2 \operatorname{sign}(a) \int_{-\infty}^{\infty} \frac{\mathrm{d} y}{1+y^{2}} \\
& \text { change of variable: } y=\tan \theta \rightarrow=2 \operatorname{sign}(a) \int_{-\pi / 2}^{\pi / 2} \frac{1+\tan ^{2} \theta}{1+\tan ^{2} \theta} \mathrm{~d} \theta=2 \operatorname{sign}(a) \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} \theta=2 \pi \operatorname{sign}(a) .
\end{aligned}
$$

