Problem 4) a) $f(x)=x / \sum_{m=0}^{2} a_{m} x^{m}=\sum_{n=0}^{\infty} c_{n} x^{n} \quad \begin{gathered}n+m=k \\ \downarrow\end{gathered}$

$$
\rightarrow \quad x=\sum_{n=0}^{\infty} c_{n} x^{n} \sum_{m=0}^{2} a_{m} x^{m}=\sum_{n=0}^{\infty} \sum_{m=0}^{2} a_{m} c_{n} x^{n+m}=\sum_{k=0}^{\infty}\left(\sum_{m=0}^{2} a_{m} c_{k-m}\right) x^{k}
$$

For the first couple of terms, where $k=0$ and $k=1$, the above equation yields

$$
\begin{array}{llll}
k=0: & a_{0} c_{0}=0 & \rightarrow \quad c_{0}=0 \\
k=1: & a_{0} c_{1}+a_{1} c_{0}=1 & \rightarrow & c_{1}=1+3 c_{0}=1
\end{array}
$$

As for the remaining terms with $k \geq 2$, we find the following recursion relation:

$$
k \geq 2: \quad a_{0} c_{k}+a_{1} c_{k-1}+a_{2} c_{k-2}=0 \quad \rightarrow \quad c_{k}=3 c_{k-1}-c_{k-2}
$$

b) The coefficients c_{k} for $k=2$ up to $k=7$ are now found to be

$$
\begin{aligned}
& c_{2}=3 c_{1}-c_{0}=3, \\
& c_{3}=3 c_{2}-c_{1}=8, \\
& c_{4}=3 c_{3}-c_{2}=21, \\
& c_{5}=3 c_{4}-c_{3}=55, \\
& c_{6}=3 c_{5}-c_{4}=144, \\
& c_{7}=3 c_{6}-c_{5}=377 .
\end{aligned}
$$

The Taylor series expansion of $f(x)$ up to and including the seventh order term is thus given by

$$
f(x)=x+3 x^{2}+8 x^{3}+21 x^{4}+55 x^{5}+144 x^{6}+377 x^{7}+\cdots
$$

c) The values of $f(x)$ and its Taylor series expansion (up to the $7^{\text {th }}$ order) at $x=0.1$ are given by

$$
\begin{aligned}
f(0.1) & =\frac{0.1}{0.01-0.3+1}=0.14084507 \cdots \\
f(0.1) & =0.1+0.03+0.008+0.0021+0.00055+0.000144+0.0000377+\cdots \\
& \cong 0.1408317
\end{aligned}
$$

The values of $f(x)$ and its Taylor series expansion (up to the $7^{\text {th }}$ order) at $x=-0.1$ are given by

$$
\begin{aligned}
f(-0.1) & =\frac{-0.1}{0.01+0.3+1}=-0.076335878 \cdots \\
f(-0.1) & =-0.1+0.03-0.008+0.0021-0.00055+0.000144-0.0000377+\cdots \\
& \cong-0.0763437
\end{aligned}
$$

Digression: Since the closest singular point of $f(z)=z /\left(z^{2}-3 z+1\right)$ to $z_{0}=x_{0}=0$ in the complex z plane is $z_{2}=1 / 2(3-\sqrt{5})+0 \mathrm{i}=0.381966 \cdots+0 \mathrm{i}$, the domain of convergence of our Taylor series can be shown to be a circle of radius $0.381966 \cdots$ centered at $z_{0}=0$. Therefore, on the real axis, the Taylor series expansion is convergent for $|x|<0.381966 \cdots$.

