Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

5 pts Problem 1) Trigonometric identities appear frequently in geometric optics - not to mention numerous other areas of science and engineering. (a) Use the circle diagram (depicted below) to prove the following identities:

$$
\begin{array}{ll}
\sin (\pi-x)=\sin x ; & \cos (\pi-x)=-\cos x \\
\sin (x-1 / 2 \pi)=-\cos x ; & \cos (1 / 2 \pi+x)=-\sin x \\
\cos (\pi+x)=-\cos x ; & \tan (\pi-x)=-\tan (x)
\end{array}
$$

5 pts b) Invoke Euler's identity, $e^{\mathrm{i} x}=\cos x+\mathrm{i} \sin x$, along with the fundamental property of the exponential function, $e^{\mathrm{i}(x+y)}=e^{\mathrm{i} x} e^{\mathrm{i} y}$, to prove the identities listed below.
$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y ;$
$\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y ;$

$\sin (2 x)=2 \sin x \cos x$
$\cos (2 x)=\cos ^{2} x-\sin ^{2} x=1-2 \sin ^{2} x=2 \cos ^{2} x-1$;
$\tan (x \pm y)=(\tan x \pm \tan y) /(1 \mp \tan x \tan y)$.
7 pts Problem 2) An ellipse in the $x y$-plane is defined by the equation $(x / a)^{2}+(y / b)^{2}=1$, where a and b are the lengths of the ellipse's semi-axes in the x and y directions, respectively. Without resorting to curvilinear coordinates to simplify the calculation, use direct integration to determine

Hint: The change of variable $x \rightarrow a \sin \theta$ could be helpful. You may also want to invoke the trig identity $\cos ^{2} \theta=1 / 2[1+\cos (2 \theta)]$.

3 pts Problem 3) a) The sum of the inverses of the $4^{\text {th }}$ power of odd integers is known to be $\sum_{n=1}^{\infty} 1 /(2 n-1)^{4}=\pi^{4} / 96$. Use this result to show that $\sum_{n=1}^{\infty}\left(1 / n^{4}\right)=\pi^{4} / 90$.
5 pts b) Invoke the result obtained in (a) to show that $\int_{0}^{1}\left[(\ln x)^{3} /(1-x)\right] \mathrm{d} x=-\pi^{4} / 15$. Note that the integrand is well-behaved in the vicinity of $x=1$, since $\ln x \rightarrow(x-1)$ as x approaches 1 .

Hint: Substitute the geometric series $\sum_{n=0}^{\infty} x^{n}$ for $1 /(1-x)$; this is a valid substitution, considering that the domain of the integral is $0 \leq x<1$. Use the method of integration by parts to evaluate the resulting integrals. Recall that $\lim _{\left(x \rightarrow 0^{+}\right)} x(\ln x)^{\alpha}=0$ for all values of α.

Problem 4) Consider the function $f(x)=x /\left(x^{2}-3 x+1\right)$, which is defined over the entire x axis except at the two singular points $x_{1,2}=1 / 2(3 \pm \sqrt{5})$, where the denominator of the function vanishes.

4 pts a) Use the method that was introduced in the class for finding Bernoulli's numbers to determine the Taylor series expansion of $f(x)$ around the point $x_{0}=0$; that is, $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$.

4 pts
b) Using the recursion formula obtained in part (a) for the Taylor series coefficients c_{n}, evaluate $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$.

2 pts c) Show that at $x= \pm 0.1$, the Taylor series expansion of $f(x)$ up to the seventh order provides good approximations to the actual values of $f(x= \pm 0.1)$.

Hint: You may want to start by writing $f(x)=x / \sum_{m=0}^{2} a_{m} x^{m}$, where $a_{0}=1, a_{1}=-3$, and $a_{2}=1$.

