Opti 403A/503A

Midterm Exam (3/13/2024)

Time: 75 minutes

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

5 pts **Problem 1**) Trigonometric identities appear frequently in geometric optics—not to mention numerous other areas of science and engineering. (a) Use the circle diagram (depicted below) to prove the following identities:

 $\tan(x \pm y) = (\tan x \pm \tan y)/(1 \mp \tan x \tan y).$

7 pts **Problem 2**) An ellipse in the *xy*-plane is defined by the equation $(x/a)^2 + (y/b)^2 = 1$, where *a* and *b* are the lengths of the ellipse's semi-axes in the *x* and *y* directions, respectively. Without resorting to curvilinear coordinates to simplify the calculation, use direct integration to determine the area of the ellipse, namely, $A = \iint_{\text{ellipse's surface}} dx dy$.

Hint: The change of variable $x \to a \sin \theta$ could be helpful. You may also want to invoke the trig identity $\cos^2 \theta = \frac{1}{2} [1 + \cos(2\theta)].$

- 3 pts **Problem 3**) a) The sum of the inverses of the 4th power of odd integers is known to be $\sum_{n=1}^{\infty} 1/(2n-1)^4 = \pi^4/96$. Use this result to show that $\sum_{n=1}^{\infty} (1/n^4) = \pi^4/90$.
- 5 pts b) Invoke the result obtained in (a) to show that $\int_0^1 [(\ln x)^3/(1-x)] dx = -\pi^4/15$. Note that the integrand is well-behaved in the vicinity of x = 1, since $\ln x \to (x 1)$ as x approaches 1.

Hint: Substitute the geometric series $\sum_{n=0}^{\infty} x^n$ for 1/(1-x); this is a valid substitution, considering that the domain of the integral is $0 \le x < 1$. Use the method of integration by parts to evaluate the resulting integrals. Recall that $\lim_{(x\to 0^+)} x(\ln x)^{\alpha} = 0$ for all values of α .

Problem 4) Consider the function $f(x) = x/(x^2 - 3x + 1)$, which is defined over the entire x-axis except at the two singular points $x_{1,2} = \frac{1}{2}(3 \pm \sqrt{5})$, where the denominator of the function vanishes.

- 4 pts a) Use the method that was introduced in the class for finding Bernoulli's numbers to determine the Taylor series expansion of f(x) around the point $x_0 = 0$; that is, $f(x) = \sum_{n=0}^{\infty} c_n x^n$.
- 4 pts b) Using the recursion formula obtained in part (a) for the Taylor series coefficients c_n , evaluate $c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7$.
- 2 pts c) Show that at $x = \pm 0.1$, the Taylor series expansion of f(x) up to the seventh order provides good approximations to the actual values of $f(x = \pm 0.1)$.

Hint: You may want to start by writing $f(x) = x/\sum_{m=0}^{2} a_m x^m$, where $a_0 = 1$, $a_1 = -3$, and $a_2 = 1$.