Problem 2) a) The disk-shaped slices at elevation z have radius $\sqrt{R^{2}-z^{2}}$ and thickness $\mathrm{d} z$. The volume of each disk is, therefore, $\pi\left(R^{2}-z^{2}\right) \mathrm{d} z$, which, upon integration, yields the volume v of the bowl, as follows:

$$
\begin{align*}
v & =\int_{z=-R}^{h-R} \pi\left(R^{2}-z^{2}\right) \mathrm{d} z=\pi\left\{R^{2}(h-R+R)-1 / 3\left[(h-R)^{3}+R^{3}\right]\right\} \\
& =\pi\left[R^{2} h-1 / 3\left(h^{3}-3 R h^{2}+3 R^{2} h\right)\right]=\pi(R-1 / 3 h) h^{2} . \tag{1}
\end{align*}
$$

b) The ring-shaped slices of the bowl have radius $R \sin \theta$ and width $R \mathrm{~d} \theta$. Their surface areas are thus given by $2 \pi R^{2} \sin \theta \mathrm{~d} \theta$, which, upon integration from $\theta=\theta_{0}=\arccos [(h-R) / R]$ to $\theta=\pi$, yield the total surface area s of the bowl as

$$
\begin{equation*}
s=\int_{\theta=\theta_{0}}^{\pi} 2 \pi R^{2} \sin \theta \mathrm{~d} \theta=-\left.2 \pi R^{2} \cos \theta\right|_{\theta=\theta_{0}} ^{\pi}=-2 \pi R^{2}[-1-(h-R) / R]=2 \pi R h . \tag{2}
\end{equation*}
$$

c) The method of Lagrange multipliers requires that the composite function $s(R, h)+\lambda v(R, h)$ be flat at the optimal point (R, h), which is as yet dependent on the Lagrange multiplier λ. Setting the partial derivatives (with respect to R and h) of the composite function to zero, we find

$$
\begin{align*}
& \frac{\partial}{\partial R}\left[2 \pi R h+\lambda \pi(R-1 / 3 h) h^{2}\right]=0 \rightarrow \pi\left(2 h+\lambda h^{2}\right)=0 \rightarrow \underbrace{h_{1}=0}, \underbrace{h_{2}=-2 / \lambda} . \tag{3}\\
& \frac{\partial}{\partial h}\left[2 \pi R h+\lambda \pi(R-1 / 3 h) h^{2}\right]=0 \rightarrow \pi\left(2 R+2 \lambda R h-\lambda h^{2}\right)=0 \rightarrow R_{1}=0, R_{2}=-2 / \lambda . \tag{4}
\end{align*}
$$

Of the two sets of solutions thus obtained, the first $\left(h_{1}, R_{1}\right)$ is unacceptable, since it results in $v=0$; see Eq.(1). As for the second solution $\left(h_{2}, R_{2}\right)$, it yields

$$
\begin{equation*}
v=\pi(R-1 / 3 h) h^{2}=\pi\left(-\frac{2}{\lambda}+\frac{2}{3 \lambda}\right)\left(\frac{4}{\lambda^{2}}\right)=-\frac{16 \pi}{3 \lambda^{3}} \quad \rightarrow \quad \lambda_{0}=-(16 \pi / 3 v)^{1 / 3} . \tag{5}
\end{equation*}
$$

Upon substituting for λ in the second set of solutions obtained in Eqs.(3) and (4), one arrives at

$$
\begin{equation*}
R_{2}=h_{2}=-2 / \lambda_{0}=(3 v / 2 \pi)^{1 / 3} . \tag{6}
\end{equation*}
$$

The above solution represents an exact hemisphere, with $h=R, v=2 \pi R^{3} / 3$, and $s=2 \pi R^{2}$.

