Problem 4) Let the base *AB* of the triangle be parallel to the *x*-axis and located at a distance *y* above the center of the circle. The length of the base will then be $\overline{AB} = 2\sqrt{R^2 - y^2}$. To maximize the area of the triangle, the height *h* must be maximized, which means that the vertex *C* should be at (x, y) = (0, -R); this yields h = R + y. The area of the triangle is now $\frac{1}{2}h\overline{AB} = (R + y)\sqrt{R^2 - y^2}$. To find the optimal value of *y*, differentiate this area with respect to *y* and set it to zero. You will have

$$\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{2}h\overline{AB}) = \sqrt{R^2 - y^2} - \frac{(R+y)y}{\sqrt{R^2 - y^2}} = 0 \quad \rightarrow \quad R^2 - y^2 = Ry + y^2 \quad \rightarrow \quad 2y^2 + Ry - R^2 = 0$$

$$\rightarrow \quad y = \frac{-R \pm \sqrt{R^2 + 8R^2}}{4} = \frac{-R \pm 3R}{4} \quad \rightarrow \quad y_1 = -R, \quad y_2 = R/2.$$

The 1st solution, $y_1 = -R$, yields a minimum area triangle at $\frac{1}{2}h\overline{AB} = 0$. The 2nd solution, $y_2 = R/2$, yields the maximum area triangle at $\frac{1}{2}h\overline{AB} = (R + \frac{1}{2}R)\sqrt{R^2 - \frac{1}{4}R^2} = 3\sqrt{3}R^2/4$. At approximately $1.3R^2$, this largest triangle area is still well below the area πR^2 of the circle.

Digression. An alternative solution to this problem is based on constrained optimization via the method of Lagrange multipliers. Let the angles subtended by \overline{AB} , \overline{BC} , \overline{AC} at the center O of the circle be $\varphi_1, \varphi_2, \varphi_3$, respectively. The area of the triangle OAB is $R^2 \sin(\varphi_1/2) \cos(\varphi_1/2) = \frac{1}{2}R^2 \sin(\varphi_1)$. Similarly, the areas of the triangles *OBC* and *OAC* will be $\frac{1}{2}R^2 \sin(\varphi_2)$ and $\frac{1}{2}R^2 \sin(\varphi_3)$.

Maximizing the area of the triangle *ABC* thus requires maximizing $\sin(\varphi_1) + \sin(\varphi_2) + \sin(\varphi_3)$ subject to the constraint $\varphi_1 + \varphi_2 + \varphi_3 = 2\pi$. Introducing the Lagrange multiplier λ , we now write

$$\frac{\partial}{\partial \varphi_1} [\sin(\varphi_1) + \sin(\varphi_2) + \sin(\varphi_3) + \lambda(\varphi_1 + \varphi_2 + \varphi_3)] = \cos(\varphi_1) + \lambda = 0,$$

$$\frac{\partial}{\partial \varphi_2} [\sin(\varphi_1) + \sin(\varphi_2) + \sin(\varphi_3) + \lambda(\varphi_1 + \varphi_2 + \varphi_3)] = \cos(\varphi_2) + \lambda = 0,$$

$$\frac{\partial}{\partial \varphi_3} [\sin(\varphi_1) + \sin(\varphi_2) + \sin(\varphi_3) + \lambda(\varphi_1 + \varphi_2 + \varphi_3)] = \cos(\varphi_3) + \lambda = 0.$$

If λ turns out to be negative, all three angles $\varphi_1, \varphi_2, \varphi_3$ can be within the interval $(0, \pi/2)$ and equal to each other, which is impossible considering that their sum must equal 2π . Alternatively, if both φ_1 and φ_2 fall within $(0, \pi/2)$ while φ_3 lands in $(3\pi/2, 2\pi)$, we end up with $\varphi_1 = \varphi_2$ and $\varphi_3 = 2\pi - \varphi_1$, which again makes it impossible for the three angles to add up to 2π . The remaining options for $\varphi_1, \varphi_2, \varphi_3$ can be similarly rejected. Consequently, λ must be positive. In this case, we can have $\varphi_1 = \varphi_2 = \varphi_3 \in (\pi/2, \pi)$, which is acceptable, yielding an area for the *ABC* triangle equal to $\frac{1}{2}R^2[\sin(\varphi_1) + \sin(\varphi_2) + \sin(\varphi_3)] = (3R^2/2)\sin(2\pi/3)$; this is the same as $3\sqrt{3}R^2/4$ obtained earlier. All other options are unacceptable; for instance, if $\varphi_1 = \varphi_2 \in (\pi/2, \pi)$ and $\varphi_3 \in (\pi, 3\pi/2)$, then $\varphi_3 = 2\pi - \varphi_1$, which violates the constraint $\varphi_1 + \varphi_2 + \varphi_3 = 2\pi$.

Constrained optimization via the Lagrange multipliers method can be straightforwardly extended to the case of *n*-sided polygons enclosed within a circle. It is readily seen that the largest area polygon must be a regular polygon whose sides subtend equal angles $\varphi_1, \varphi_2, \dots, \varphi_n$ at the center of the circle.