Problem 4) Let the base $A B$ of the triangle be parallel to the x-axis and located at a distance y above the center of the circle. The length of the base will then be $\overline{A B}=2 \sqrt{R^{2}-y^{2}}$. To maximize the area of the triangle, the height h must be maximized, which means that the vertex C should be at $(x, y)=(0,-R)$; this yields $h=R+y$. The area of the triangle is now $1 / 2 h \overline{A B}=$ $(R+y) \sqrt{R^{2}-y^{2}}$. To find the optimal value of y, differentiate this area with respect to y and set it to zero. You will have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} y}(1 / 2 h \overline{A B}) & =\sqrt{R^{2}-y^{2}}-\frac{(R+y) y}{\sqrt{R^{2}-y^{2}}}=0 \quad \rightarrow \quad R^{2}-y^{2}=R y+y^{2} \rightarrow 2 y^{2}+R y-R^{2}=0 \\
& \rightarrow y=\frac{-R \pm \sqrt{R^{2}+8 R^{2}}}{4}=\frac{-R \pm 3 R}{4} \quad \rightarrow \quad y_{1}=-R, \quad y_{2}=R / 2
\end{aligned}
$$

The $1^{\text {st }}$ solution, $y_{1}=-R$, yields a minimum area triangle at $1 / 2 h \overline{A B}=0$. The $2^{\text {nd }}$ solution, $y_{2}=R / 2$, yields the maximum area triangle at $1 / 2 h \overline{A B}=(R+1 / 2 R) \sqrt{R^{2}-1 / 4 R^{2}}=3 \sqrt{3} R^{2} / 4$. At approximately $1.3 R^{2}$, this largest triangle area is still well below the area πR^{2} of the circle.

Digression. An alternative solution to this problem is based on constrained optimization via the method of Lagrange multipliers. Let the angles subtended by $\overline{A B}, \overline{B C}, \overline{A C}$ at the center O of the circle be $\varphi_{1}, \varphi_{2}, \varphi_{3}$, respectively. The area of the triangle $O A B$ is $R^{2} \sin \left(\varphi_{1} / 2\right) \cos \left(\varphi_{1} / 2\right)=$ $1 / 2 R^{2} \sin \left(\varphi_{1}\right)$. Similarly, the areas of the triangles $O B C$ and $O A C$ will be $1 / 2 R^{2} \sin \left(\varphi_{2}\right)$ and $1 / 2 R^{2} \sin \left(\varphi_{3}\right)$.

Maximizing the area of the triangle $A B C$ thus requires maximizing $\sin \left(\varphi_{1}\right)+\sin \left(\varphi_{2}\right)+$ $\sin \left(\varphi_{3}\right)$ subject to the constraint $\varphi_{1}+\varphi_{2}+\varphi_{3}=2 \pi$. Introducing the Lagrange multiplier λ, we now write

$$
\begin{aligned}
& \frac{\partial}{\partial \varphi_{1}}\left[\sin \left(\varphi_{1}\right)+\sin \left(\varphi_{2}\right)+\sin \left(\varphi_{3}\right)+\lambda\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)\right]=\cos \left(\varphi_{1}\right)+\lambda=0, \\
& \frac{\partial}{\partial \varphi_{2}}\left[\sin \left(\varphi_{1}\right)+\sin \left(\varphi_{2}\right)+\sin \left(\varphi_{3}\right)+\lambda\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)\right]=\cos \left(\varphi_{2}\right)+\lambda=0, \\
& \frac{\partial}{\partial \varphi_{3}}\left[\sin \left(\varphi_{1}\right)+\sin \left(\varphi_{2}\right)+\sin \left(\varphi_{3}\right)+\lambda\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)\right]=\cos \left(\varphi_{3}\right)+\lambda=0 .
\end{aligned}
$$

If λ turns out to be negative, all three angles $\varphi_{1}, \varphi_{2}, \varphi_{3}$ can be within the interval $(0, \pi / 2)$ and equal to each other, which is impossible considering that their sum must equal 2π. Alternatively, if both φ_{1} and φ_{2} fall within $(0, \pi / 2)$ while φ_{3} lands in $(3 \pi / 2,2 \pi)$, we end up
with $\varphi_{1}=\varphi_{2}$ and $\varphi_{3}=2 \pi-\varphi_{1}$, which again makes it impossible for the three angles to add up to 2π. The remaining options for $\varphi_{1}, \varphi_{2}, \varphi_{3}$ can be similarly rejected. Consequently, λ must be positive. In this case, we can have $\varphi_{1}=\varphi_{2}=\varphi_{3} \in(\pi / 2, \pi)$, which is acceptable, yielding an area for the $A B C$ triangle equal to $1 / 2 R^{2}\left[\sin \left(\varphi_{1}\right)+\sin \left(\varphi_{2}\right)+\sin \left(\varphi_{3}\right)\right]=\left(3 R^{2} / 2\right) \sin (2 \pi / 3)$; this is the same as $3 \sqrt{3} R^{2} / 4$ obtained earlier. All other options are unacceptable; for instance, if $\varphi_{1}=\varphi_{2} \in(\pi / 2, \pi)$ and $\varphi_{3} \in(\pi, 3 \pi / 2)$, then $\varphi_{3}=2 \pi-\varphi_{1}$, which violates the constraint $\varphi_{1}+\varphi_{2}+\varphi_{3}=2 \pi$.

Constrained optimization via the Lagrange multipliers method can be straightforwardly extended to the case of n-sided polygons enclosed within a circle. It is readily seen that the largest area polygon must be a regular polygon whose sides subtend equal angles $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$ at the center of the circle.

