Problem 3)
$$\sin(x) = 2 \sin(x/2) \cos(x/2)$$

= $2^2 \sin(x/4) \cos(x/4) \cos(x/2)$
= $2^3 \sin(x/8) \cos(x/8) \cos(x/4) \cos(x/2)$
:
= $2^n \sin(x/2^n) \cos(x/2^n) \cdots \cos(x/2^3) \cos(x/2^2) \cos(x/2^1)$.

As *n* increases, $\sin(x/2^n) \to x/2^n$, which means that $2^n \sin(x/2^n) \to x$. Considering that $\cos(x/2^n) \to 1$ as $n \to \infty$, the above process can continue indefinitely, so that the approximation $2^n \sin(x/2^n) \cong x$ becomes exact in the limit of $n \to \infty$, yielding $\sin(x) = x \prod_{n=1}^{\infty} \cos(x/2^n)$.