Problem 1) $\sum_{n=1}^{N} n \cdot(n!)=1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+N \cdot N$! equals 1 for $N=1$, which agrees with $(N+1)!-1=2!-1=1$. Also, for $N=2$, the sum equals 5 , which is the same as $3!-1=5$. Assuming that the assertion is correct for N, we now show that it is also correct for $N+1$. We will have

$$
\sum_{n=1}^{N+1} n \cdot(n!)=[(N+1)!-1]+(N+1) \cdot(N+1)!=(N+1)!(N+1+1)-1=(N+2)!-1 .
$$

The proof is now complete.
(Gradshteyn \& Ryzhik 0.125)

