Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

5 pts

3 pts

4 pts \quad b) Show that $\int_{x=1}^{e} f(x) \mathrm{d} x=1 / 2 e-1$.
Hint: To evaluate the integral, consider the change of variable $y=1+\ln (x)$. The resulting integral may then be computed using the method of integration by parts. Problem 6) Use Euler's infinite-product expansion of $\sin x$, namely, $\sin x=x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)$, to prove the following identities:

3 pts
2 pts
Problem 1) Use the method of proof by induction to show that $\sum_{n=1}^{N} n \cdot(n!)=(N+1)!-1$.
Problem 2) Consider the geometric series $\sum_{n=0}^{\infty} x^{n}=1 /(1-x)$, which is valid for $|x|<1$.
a) Find an infinite series expansion for $1 /(1-x)^{2}$, valid for $|x|<1$, by differentiating the geometric series with respect to x.
b) Obtain the same result as in (a) by directly evaluating $\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}$.

Problem 3) Show that $\sin (x)=x \prod_{n=1}^{\infty} \cos \left(x / 2^{n}\right)$.
Hint: The identity $\sin (2 y)=2 \sin (y) \cos (y)$ will be useful. Also, note that $\sin (y) \rightarrow y$ when $y \rightarrow 0$.
6 pts Problem 4) Among all the triangles that can be enclosed within a circle of radius R, find one that has the largest area. Determine the area of this largest triangle as a function of R.

Hint: The base $A B$ of the triangle can be chosen to be parallel to the x-axis. (This is because the symmetry of the circle allows one to rotate the coordinate system around the center until the x-axis becomes parallel to $A B$.) Fixing the elevation y of the base above the x-axis, choose the location of the vertex C on the perimeter of the circle in such a way as to obtain the maximum height h for the $A B C$ triangle. You must now find the elevation y of the base $A B$ that maximizes the area $1 / 2 h \overline{A B}$ of the $A B C$ triangle.

Problem 5) a) Plot a rough sketch of the function $f(x)=\ln (x) /[1+\ln (x)]^{2}$ over the positive real axis, $x>0$. Identify the locations of the maxima, minima, and inflection points of the function.
a) $\cot (\pi x)=\frac{1}{\pi x}+\frac{2 x}{\pi} \sum_{n=1}^{\infty}\left(\frac{1}{x^{2}-n^{2}}\right)=\frac{1}{\pi x}+\frac{x}{\pi} \sum_{\substack{n=-\infty \\(n \neq 0)}}^{\infty}\left[\frac{1}{n(x-n)}\right]$.
b) $\quad \operatorname{coth}(\pi x)=\frac{1}{\pi x}+\frac{2 x}{\pi} \sum_{n=1}^{\infty}\left(\frac{1}{x^{2}+n^{2}}\right)$.

Hint: Convert the infinite product to an infinite sum by taking the natural logarithm of $\sin (x)$. Differentiation with respect to x then yields the infinite series expansion of the cotangent function.

