Opti 403A/503A Final Exam (5/10/2023) Time: 2 hours

Please write your name and ID number on all the pages, then staple them together.
Answer all the questions.

Problem 1) As depicted in the figure, the unit delta-function 6(x) can be considered to be the
limit of a tall, narrow, symmetric rectangular pulse g(x) = £ rect(x /&), whose area equals 1.
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6 pts a)Write an expression (consisting of a pair of shifted delta-functions) for the derivative with
respect to x of g(x), namely, g'(x) = d[e trect(x/£)]/dx.

6pts b) Show that, for any well-behaved function f(x) that is continuous and differentiable in the
vicinity of an arbitrary point x,, the function g'(x) obtained in part (a) exhibits the

characteristic sifting property of §'(x); that is, ffooo f(x)g' (x —x,)dx = —f"(x,).

Problem 2) A hollow spherical shell of radius R is decapitated at a height h to create a bowl of
volume v, as shown in figure (a). In this problem you are asked to use the method of Lagrange
multipliers to determine the values of R and h that produce the smallest surface area s for some
desired volume v.
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4 pts  a) Derive an expression for the volume v of the bowl by integrating over disk-shaped slices at
elevation z (relative to the center of the sphere) from z = —R to z = h — R; see figure (b).

4 pts b) Derive an expression for the surface area s of the bowl by integrating over rings of radius
R sin 6, where 6 ranges from 6, = arccos[(h — R)/R] to m; see figure (c).
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c¢) Use the method of Lagrange multipliers to find the values of R and h for the smallest surface
area s that is compatible with a desired volume v of the bowl.

Hint: For part (a), the identity (x — y)3 = x3 — 3x2y + 3xy? — y3 can be helpful. For part (b), the
needed integral is [sinfdf = —cosf. In part (c), the method starts with forming the compound
function s(R, h) + Av(R, h), where the adjustable parameter A is the Lagrange multiplier.

Problem 3) A function f(x) has nonzero values only over the positive half of the x-axis; that is,
f(x) = 0 for x < 0. Multiplying f (x) by the unit step-function step(x) does not change f(x) in
any way; therefore, step(x)f(x) = f(x). Let the Fourier transform F(s) of f(x) be written in
terms of its real and imaginary parts, namely, F(s) = Fz(s) + iF;(s). Considering that the
Fourier transform of step(x) is %28(s) — i/(2ms), find the relationship between F,(s) and F(s).

Hint: You will find that F;(s) is the convolution between F;(s) and a third function. Similarly, F,(s)
turns out to be the convolution between F;(s) and a third function.

Problem 4) Given the constant parameters a > 0, b > 0 and § = |B|e'?#, where 0 < @, < /2
and |B| # 0, use complex-plane techniques to show that

fwcos(ax) — cos(bx) dx = n[(b —a)f +e7bP — e‘aﬁ]
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You must indicate how the integral is extended to the entire x-axis at first, and also why the
large semi-circles do not contribute to the corresponding loop integral. (Citation of the relevant
theorem or lemma will suffice.) The necessary residues at each pole must be clearly evaluated.
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Hint: You may invoke the identity cos({) = 2(e!$ + ™€), then use the contours shown in the figure to
evaluate the resulting integrals. Note that z = 0 is a second-order pole of the integrand.
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