Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) As depicted in the figure, the unit delta-function $\delta(x)$ can be considered to be the limit of a tall, narrow, symmetric rectangular pulse $g(x) = \varepsilon^{-1} \text{rect}(x/\varepsilon)$, whose area equals 1.

- a)Write an expression (consisting of a pair of shifted delta-functions) for the derivative with respect to x of $g(x)$, namely, $g'(x) = d[\varepsilon^{-1}\text{rect}(x/\varepsilon)]/dx$. 6 pts
- b) Show that, for any well-behaved function $f(x)$ that is continuous and differentiable in the vicinity of an arbitrary point x_0 , the function $g'(x)$ obtained in part (a) exhibits the characteristic sifting property of $\delta'(x)$; that is, $\int_{-\infty}^{\infty} f(x)g'(x - x_0)dx = -f'(x_0)$. 6 pts

Problem 2) A hollow spherical shell of radius R is decapitated at a height h to create a bowl of volume v , as shown in figure (a). In this problem you are asked to use the method of Lagrange multipliers to determine the values of R and h that produce the smallest surface area s for some desired volume ν .

- a) Derive an expression for the volume ν of the bowl by integrating over disk-shaped slices at elevation z (relative to the center of the sphere) from $z = -R$ to $z = h - R$; see figure (b). 4 pts
- b) Derive an expression for the surface area s of the bowl by integrating over rings of radius R sin θ , where θ ranges from $\theta_0 = \arccos[(h - R)/R]$ to π ; see figure (c). 4 pts

continued on the next page…

c) Use the method of Lagrange multipliers to find the values of R and h for the smallest surface area s that is compatible with a desired volume ν of the bowl. 6 pts

Hint: For part (a), the identity $(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$ can be helpful. For part (b), the needed integral is $\int \sin \theta d\theta = -\cos \theta$. In part (c), the method starts with forming the compound function $s(R, h) + \lambda v(R, h)$, where the adjustable parameter λ is the Lagrange multiplier.

Problem 3) A function $f(x)$ has nonzero values only over the positive half of the x-axis; that is, $f(x) = 0$ for $x \le 0$. Multiplying $f(x)$ by the unit step-function step(x) does not change $f(x)$ in any way; therefore, step(x) $f(x) = f(x)$. Let the Fourier transform $F(s)$ of $f(x)$ be written in terms of its real and imaginary parts, namely, $F(s) = F_R(s) + iF_I(s)$. Considering that the Fourier transform of step(x) is $\frac{1}{2}\delta(s) - i/(2\pi s)$, find the relationship between $F_R(s)$ and $F_I(s)$. 12 pts

Hint: You will find that $F_R(s)$ is the convolution between $F_I(s)$ and a third function. Similarly, $F_I(s)$ turns out to be the convolution between $F_R(s)$ and a third function.

Problem 4) Given the constant parameters $a > 0$, $b > 0$ and $\beta = |\beta|e^{i\varphi_{\beta}}$, where $0 \le \varphi_{\beta} < \pi/2$ and $|\beta| \neq 0$, use complex-plane techniques to show that 12 pts

$$
\int_0^{\infty} \frac{\cos(ax) - \cos(bx)}{x^2(x^2 + \beta^2)} dx = \frac{\pi[(b-a)\beta + e^{-b\beta} - e^{-a\beta}]}{2\beta^3}.
$$

You must indicate how the integral is extended to the entire x -axis at first, and also why the large semi-circles do *not* contribute to the corresponding loop integral. (Citation of the relevant theorem or lemma will suffice.) The necessary residues at each pole must be clearly evaluated.

Hint: You may invoke the identity $\cos(\zeta) = \frac{1}{2}(e^{i\zeta} + e^{-i\zeta})$, then use the contours shown in the figure to evaluate the resulting integrals. Note that $z = 0$ is a second-order pole of the integrand.