Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) As depicted in the figure, the unit delta-function $\delta(x)$ can be considered to be the limit of a tall, narrow, symmetric rectangular pulse $g(x) = \varepsilon^{-1} \operatorname{rect}(x/\varepsilon)$, whose area equals 1.

- 6 pts a)Write an expression (consisting of a pair of shifted delta-functions) for the derivative with respect to x of g(x), namely, $g'(x) = d[\varepsilon^{-1} \operatorname{rect}(x/\varepsilon)]/dx$.
- 6 pts b) Show that, for any well-behaved function f(x) that is continuous and differentiable in the vicinity of an arbitrary point x_0 , the function g'(x) obtained in part (a) exhibits the characteristic sifting property of $\delta'(x)$; that is, $\int_{-\infty}^{\infty} f(x)g'(x-x_0)dx = -f'(x_0)$.

Problem 2) A hollow spherical shell of radius R is decapitated at a height h to create a bowl of volume v, as shown in figure (a). In this problem you are asked to use the method of Lagrange multipliers to determine the values of R and h that produce the smallest surface area s for some desired volume v.

- 4 pts a) Derive an expression for the volume v of the bowl by integrating over disk-shaped slices at elevation z (relative to the center of the sphere) from z = -R to z = h R; see figure (b).
- 4 pts b) Derive an expression for the surface area s of the bowl by integrating over rings of radius $R \sin \theta$, where θ ranges from $\theta_0 = \arccos[(h R)/R]$ to π ; see figure (c).

continued on the next page...

6 pts c) Use the method of Lagrange multipliers to find the values of R and h for the smallest surface area s that is compatible with a desired volume v of the bowl.

Hint: For part (a), the identity $(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$ can be helpful. For part (b), the needed integral is $\int \sin \theta \, d\theta = -\cos \theta$. In part (c), the method starts with forming the compound function $s(R,h) + \lambda v(R,h)$, where the adjustable parameter λ is the Lagrange multiplier.

12 pts **Problem 3**) A function f(x) has nonzero values only over the positive half of the x-axis; that is, f(x) = 0 for $x \le 0$. Multiplying f(x) by the unit step-function step(x) does not change f(x) in any way; therefore, step(x)f(x) = f(x). Let the Fourier transform F(s) of f(x) be written in terms of its real and imaginary parts, namely, $F(s) = F_R(s) + iF_I(s)$. Considering that the Fourier transform of step(x) is $\frac{1}{2}\delta(s) - i/(2\pi s)$, find the relationship between $F_R(s)$ and $F_I(s)$.

Hint: You will find that $F_R(s)$ is the convolution between $F_I(s)$ and a third function. Similarly, $F_I(s)$ turns out to be the convolution between $F_R(s)$ and a third function.

12 pts **Problem 4**) Given the constant parameters a > 0, b > 0 and $\beta = |\beta|e^{i\varphi_{\beta}}$, where $0 \le \varphi_{\beta} < \pi/2$ and $|\beta| \ne 0$, use complex-plane techniques to show that

$$\int_{0}^{\infty} \frac{\cos(ax) - \cos(bx)}{x^{2}(x^{2} + \beta^{2})} dx = \frac{\pi [(b - a)\beta + e^{-b\beta} - e^{-a\beta}]}{2\beta^{3}}.$$

You must indicate how the integral is extended to the entire *x*-axis at first, and also why the large semi-circles do *not* contribute to the corresponding loop integral. (Citation of the relevant theorem or lemma will suffice.) The necessary residues at each pole must be clearly evaluated.

Hint: You may invoke the identity $\cos(\zeta) = \frac{1}{2}(e^{i\zeta} + e^{-i\zeta})$, then use the contours shown in the figure to evaluate the resulting integrals. Note that z = 0 is a second-order pole of the integrand.