Problem 4) Drawing the lines $D E$ and $D F$ parallel to $A B$ and $A C$, respectively, we note that the line $A D$ cuts these pairs of parallel lines at equal angles, as shown. Since $A D$ is the bisector of the angle A, we have $\alpha=\beta$. Consequently, $\overline{A E}=\overline{D E}$ and $\overline{D F}=\overline{A F}$. Considering that $A F D E$ is a parallelogram, we conclude that $\overline{D E}=\overline{D F}$.

Since the triangles $A B C$ and $F B D$ are similar, we have

$$
\begin{equation*}
\overline{B D}: \overline{B C}=\overline{D F}: \overline{A C} \tag{1}
\end{equation*}
$$

Similarly, since the triangles $A B C$ and $E D C$ are similar, one may write

$$
\begin{equation*}
\overline{C D}: \overline{B C}=\overline{D E}: \overline{A B} . \tag{2}
\end{equation*}
$$

Dividing Eq.(1) by Eq.(2) and recalling that $\overline{D E}=\overline{D F}$ now yields the desired result, as follows:

$$
\begin{equation*}
\overline{B D}: \overline{C D}=\overline{A B}: \overline{A C} . \tag{3}
\end{equation*}
$$

Digression: An alternative proof of the stated property of the triangle is outlined below.

Step 1: Pick the point C^{\prime} on $A B$ such that $\overline{A C^{\prime}}=\overline{A C}$.
Step 2: Draw a straight line from D to C^{\prime}. The equality of
 triangles $A C D$ and $A C^{\prime} D$ implies that $\overline{C^{\prime} D}=\overline{C D}$ and $\widehat{A D C}=\widehat{A D C^{\prime}}$ (these angles are identified as γ and δ).
Step 3: Draw the straight line $C^{\prime} D^{\prime}$ parallel to $B D$ and observe that $\widehat{C^{\prime} D^{\prime} D}=\widehat{A D C}=\gamma$. Therefore, the triangle $D C^{\prime} D^{\prime}$ is isoceles, meaning that $\overline{C^{\prime} D}=\overline{C^{\prime} D^{\prime}}$.
Step 4: The similar triangles $A C^{\prime} D^{\prime}$ and $A B D$ now yield $\overline{A C^{\prime}}: \overline{A B}=\overline{C^{\prime} D^{\prime}}: \overline{B D}$.
Considering that $\overline{A C^{\prime}}=\overline{A C}$ and $\overline{C^{\prime} D^{\prime}}=\overline{C^{\prime} D}=\overline{C D}$, we will have $\overline{A C}: \overline{A B}=\overline{C D}: \overline{B D}$, thus completing the proof.

