$B \xrightarrow{F \qquad \beta \qquad \alpha \qquad \beta \qquad E \qquad C}$

 $\overline{BD}:\overline{BC} = \overline{DF}:\overline{AC}.$

Similarly, since the triangles ABC and EDC are similar, one may write

$$\overline{CD}:\overline{BC}=\overline{DE}:\overline{AB}.$$
(2)

Dividing Eq.(1) by Eq.(2) and recalling that $\overline{DE} = \overline{DF}$ now yields the desired result, as follows:

$$\overline{BD}:\overline{CD}=\overline{AB}:\overline{AC}.$$
(3)

Digression: An alternative proof of the stated property of the triangle is outlined below.

Problem 4) Drawing the lines *DE* and *DF* parallel to *AB*

and *AC*, respectively, we note that the line *AD* cuts these pairs of parallel lines at equal angles, as shown. Since *AD* is the bisector of the angle *A*, we have $\alpha = \beta$. Consequently, $\overline{AE} = \overline{DE}$ and $\overline{DF} = \overline{AF}$. Considering that *AFDE* is a parallelogram, we conclude that $\overline{DE} = \overline{DF}$. Since the triangles *ABC* and *FBD* are similar, we have

Step 1: Pick the point C' on AB such that $\overline{AC'} = \overline{AC}$.

- Step 2: Draw a straight line from *D* to *C'*. The equality of triangles *ACD* and *AC'D* implies that $\overline{C'D} = \overline{CD}$ and $\overline{ADC} = \overline{ADC'}$ (these angles are identified as γ and δ).
- Step 3: Draw the straight line C'D' parallel to BD and observe that $\widehat{C'D'D} = \widehat{ADC} = \gamma$. Therefore, the triangle DC'D' is isoceles, meaning that $\overline{C'D} = \overline{C'D'}$.

Step 4: The similar triangles AC'D' and ABD now yield $\overline{AC'}: \overline{AB} = \overline{C'D'}: \overline{BD}$.

Considering that $\overline{AC'} = \overline{AC}$ and $\overline{C'D'} = \overline{CD}$, we will have $\overline{AC} : \overline{AB} = \overline{CD} : \overline{BD}$, thus completing the proof.

(1)