Problem 3) a)
$$\frac{df(x)}{dx} = \frac{d\eta(x)}{dx} \times \frac{df(\eta)}{d\eta} = -x^{-2} \frac{df(\eta)}{d\eta}$$
.
 $x^2 f'(x) + f(x) = 0 \quad \rightarrow \quad -\frac{df(\eta)}{d\eta} + f(\eta) = 0 \quad \rightarrow \quad f(\eta) = Ae^{\eta} \quad \rightarrow \quad f(x) = Ae^{1/x}.$

b) When $x \to \pm \infty$, we will have $f(x) \to Ae^0 = A$. When $x \to 0^-$, we find $f(x) \to Ae^{-\infty} = 0$. and when $x \to 0^+$, we will have $f(x) \to Ae^{+\infty} = \infty$. Note also that, in the limit when $x \to 0^-$, all the derivatives of f(x) approach zero. For example, $\lim_{x\to 0^-} f'(x) = \lim_{x\to 0^-} (-x^{-2}e^{1/x}) = 0$. Thus, in the vicinity of $x = 0^-$, the function f(x) is extremely smooth, since all its derivatives approach zero when x approaches the origin from the left-hand side. A sketch of $e^{1/x}$ is shown below. The inflection point at $x = -\frac{1}{2}$ is where the second derivative of the function vanishes, that is, where $d^2(e^{1/x})/dx^2 = (2x^{-3} + x^{-4})e^{1/x} = 0$. Note that the graph is not properly scaled.

