Problem 3) a) $\frac{\mathrm{d} f(x)}{\mathrm{d} x}=\frac{\mathrm{d} \eta(x)}{\mathrm{d} x} \times \frac{\mathrm{d} f(\eta)}{\mathrm{d} \eta}=-x^{-2} \frac{\mathrm{~d} f(\eta)}{\mathrm{d} \eta}$.

$$
x^{2} f^{\prime}(x)+f(x)=0 \rightarrow-\frac{\mathrm{d} f(\eta)}{\mathrm{d} \eta}+f(\eta)=0 \quad \rightarrow \quad f(\eta)=A e^{\eta} \quad \rightarrow \quad f(x)=A e^{1 / x}
$$

b) When $x \rightarrow \pm \infty$, we will have $f(x) \rightarrow A e^{0}=A$. When $x \rightarrow 0^{-}$, we find $f(x) \rightarrow A e^{-\infty}=0$. and when $x \rightarrow 0^{+}$, we will have $f(x) \rightarrow A e^{+\infty}=\infty$. Note also that, in the limit when $x \rightarrow 0^{-}$, all the derivatives of $f(x)$ approach zero. For example, $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}}\left(-x^{-2} e^{1 / x}\right)=0$. Thus, in the vicinity of $x=0^{-}$, the function $f(x)$ is extremely smooth, since all its derivatives approach zero when x approaches the origin from the left-hand side. A sketch of $e^{1 / x}$ is shown below. The inflection point at $x=-1 / 2$ is where the second derivative of the function vanishes, that is, where $\mathrm{d}^{2}\left(e^{1 / x}\right) / \mathrm{d} x^{2}=\left(2 x^{-3}+x^{-4}\right) e^{1 / x}=0$. Note that the graph is not properly scaled.

