Opti 403A/503A Final Exam Solutions Spring 2022

Problem 2) The binomial expansion of cos?™(mx) = (™ + e~1™*)2" /22" yijelds
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Recalling that the Fourier transform of e!2™50¥ is §(s — s,), we find the Fourier transform of
the above function to be
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Upon normalization by A,,, the magnitude of the k™ delta-function in the Fourier domain will be
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It is seen that the central §-function located at s = 0 (corresponding to k = 0) has unit
magnitude. The adjacent §-functions at s = +1 have a slightly reduced magnitude n/(n + 1).

At s = +2, the magnitude of both §-functions is n(n — 1)/[(n + 1)(n + 2)], and so on. The
decline continues until s = +n, where the terminal §-functions have the negligible magnitude
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As n grows larger, the set of §-functions in the Fourier domain spreads further out from the
center while its central §-functions become more uniform in magnitude. In the limit of n — oo,
the Fourier transform of the normalized cos?™(mx) approaches Y2 _.. (s — k) = comb(s).

Digression: The normalization factor has been determined via integration by parts, as follows:

[” cos?™(mx) dx = [
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= n~ 1 sin(mx) cos?™(nx)|%, + 2n — 1) f_l/f/z sin?(mx) cos?™ 2 (mx) dx
=02n-1) f_l/f/z[l — cos?(mx)] cos?™ 2 (mx) dx

=2n-1) f_l/f/z cos2D(gx)dx — (2n — 1) f_l/f/z cos?™(mx) dx

- f_l/f/z cos?™(mx) dx = (272:1) f_l/f/z cos?™=D (1x) dx. (5)

Repeating the above process, we note that, in each step, n in the exponent of cos?™(mx) is
reduced by 1. Eventually we will reach cos®(mrx) = 1, whose integral equals 1. Consequently,
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