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Problem 2) The binomial expansion of cos2𝑛𝑛(𝜋𝜋𝜋𝜋) = (𝑒𝑒i𝜋𝜋𝜋𝜋 + 𝑒𝑒−i𝜋𝜋𝜋𝜋)2𝑛𝑛 22𝑛𝑛⁄  yields 

 cos2𝑛𝑛(𝜋𝜋𝜋𝜋) = �𝑒𝑒
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Recalling that the Fourier transform of 𝑒𝑒i2𝜋𝜋𝑠𝑠0𝜋𝜋 is 𝛿𝛿(𝑠𝑠 − 𝑠𝑠0), we find the Fourier transform of 
the above function to be 
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Upon normalization by 𝐴𝐴𝑛𝑛, the magnitude of the 𝑘𝑘th delta-function in the Fourier domain will be  
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It is seen that the central 𝛿𝛿-function located at 𝑠𝑠 = 0 (corresponding to 𝑘𝑘 = 0) has unit 
magnitude. The adjacent 𝛿𝛿-functions at 𝑠𝑠 = ±1 have a slightly reduced magnitude 𝑛𝑛 (𝑛𝑛 + 1)⁄ . 
At 𝑠𝑠 = ±2, the magnitude of both 𝛿𝛿-functions is 𝑛𝑛(𝑛𝑛 − 1) [(𝑛𝑛 + 1)(𝑛𝑛 + 2)]⁄ , and so on. The 
decline continues until 𝑠𝑠 = ±𝑛𝑛, where the terminal 𝛿𝛿-functions have the negligible magnitude 
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As 𝑛𝑛 grows larger, the set of 𝛿𝛿-functions in the Fourier domain spreads further out from the 
center while its central 𝛿𝛿-functions become more uniform in magnitude. In the limit of 𝑛𝑛 → ∞, 
the Fourier transform of the normalized cos2𝑛𝑛(𝜋𝜋𝜋𝜋) approaches ∑ 𝛿𝛿(𝑠𝑠 − 𝑘𝑘)∞

𝑘𝑘=−∞ = comb(𝑠𝑠). 

Digression: The normalization factor has been determined via integration by parts, as follows: 

 ∫ cos2𝑛𝑛(𝜋𝜋𝜋𝜋) d𝜋𝜋½
−½ = ∫ cos(𝜋𝜋𝜋𝜋) cos2𝑛𝑛−1(𝜋𝜋𝜋𝜋) d𝜋𝜋½

−½  

 = 𝜋𝜋−1 sin(𝜋𝜋𝜋𝜋) cos2𝑛𝑛−1(𝜋𝜋𝜋𝜋)|−½
½ + (2𝑛𝑛 − 1)∫ sin2(𝜋𝜋𝜋𝜋) cos2𝑛𝑛−2(𝜋𝜋𝜋𝜋) d𝜋𝜋½
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 = (2𝑛𝑛 − 1)∫ [1 − cos2(𝜋𝜋𝜋𝜋)] cos2𝑛𝑛−2(𝜋𝜋𝜋𝜋) d𝜋𝜋½
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 = (2𝑛𝑛 − 1)∫ cos2(𝑛𝑛−1)(𝜋𝜋𝜋𝜋) d𝜋𝜋½
−½ − (2𝑛𝑛 − 1)∫ cos2𝑛𝑛(𝜋𝜋𝜋𝜋) d𝜋𝜋½
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Repeating the above process, we note that, in each step, 𝑛𝑛 in the exponent of cos2𝑛𝑛(𝜋𝜋𝜋𝜋) is 
reduced by 1. Eventually we will reach cos0(𝜋𝜋𝜋𝜋) = 1, whose integral equals 1. Consequently, 

 ∫ cos2𝑛𝑛(𝜋𝜋𝜋𝜋) d𝜋𝜋½
−½ = (2𝑛𝑛−1)(2𝑛𝑛−3)⋯(3)(1)
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𝑛𝑛 −𝑚𝑚 = 𝑘𝑘 


