Problem 1) a) The area under $\zeta(x)$ is $2(\alpha / 3)[(0.3 / \alpha)+(1.2 / \alpha)]=1$. The function is even (i.e., symmetric around the vertical axis) and, in the limit when $\alpha \rightarrow 0$, it becomes tall and narrow. These are all the requirements for a δ-function. Consequently, $\lim _{\alpha \rightarrow 0} \zeta(x)=\delta(x)$.
b) A plot of the derivative $\zeta^{\prime}(x)$ of $\zeta(x)$ is shown below. For an arbitrary function $f(x)$ that is continuous and well-behaved in the vicinity of $x=0$, the sifting property of $\zeta^{\prime}(x)$ when α is sufficiently small is verified by integrating $f(x) \zeta^{\prime}(x)$ over all six segments of $\zeta^{\prime}(x)$, as follows:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) \zeta^{\prime}(x) \mathrm{d} x=(\alpha / 3)\left[\left(0.9 / \alpha^{2}\right) f(-5 \alpha / 6)+\left(2.7 / \alpha^{2}\right) f(-\alpha / 2)-\left(3.6 / \alpha^{2}\right) f(-\alpha / 6)\right. \\
& \left.+\left(3.6 / \alpha^{2}\right) f(\alpha / 6)-\left(2.7 / \alpha^{2}\right) f(\alpha / 2)-\left(0.9 / \alpha^{2}\right) f(5 \alpha / 6)\right] \\
& =(0.3 / \alpha)[f(-5 \alpha / 6)-f(5 \alpha / 6)]+(0.9 / \alpha)[f(-\alpha / 2)-f(\alpha / 2)] \\
& -(1.2 / \alpha)[f(-\alpha / 6)-f(\alpha / 6)] \\
& =-(0.3 / \alpha)(5 \alpha / 3) f^{\prime}(0)-(0.9 / \alpha) \alpha f^{\prime}(0)+(1.2 / \alpha)(\alpha / 3) f^{\prime}(0) \\
& =(-0.5-0.9+0.4) f^{\prime}(0)=-f^{\prime}(0) \text {. }
\end{aligned}
$$

