Problem 1) a) The area under $\zeta(x)$ is $2(\alpha/3)[(0.3/\alpha) + (1.2/\alpha)] = 1$. The function is even (i.e., symmetric around the vertical axis) and, in the limit when $\alpha \to 0$, it becomes tall and narrow. These are all the requirements for a δ -function. Consequently, $\lim_{\alpha \to 0} \zeta(x) = \delta(x)$.

b) A plot of the derivative $\zeta'(x)$ of $\zeta(x)$ is shown below. For an arbitrary function f(x) that is continuous and well-behaved in the vicinity of x = 0, the sifting property of $\zeta'(x)$ when α is sufficiently small is verified by integrating $f(x)\zeta'(x)$ over all six segments of $\zeta'(x)$, as follows:

$$\begin{split} \int_{-\infty}^{\infty} f(x)\zeta'(x)dx &= (\alpha/3) \left[(0.9/\alpha^2)f(-5\alpha/6) + (2.7/\alpha^2)f(-\alpha/2) - (3.6/\alpha^2)f(-\alpha/6) \right. \\ &\quad + (3.6/\alpha^2)f(\alpha/6) - (2.7/\alpha^2)f(\alpha/2) - (0.9/\alpha^2)f(5\alpha/6) \right] \\ &= (0.3/\alpha)[f(-5\alpha/6) - f(5\alpha/6)] + (0.9/\alpha)[f(-\alpha/2) - f(\alpha/2)] \\ &\quad - (1.2/\alpha)[f(-\alpha/6) - f(\alpha/6)] \\ &= -(0.3/\alpha)(5\alpha/3)f'(0) - (0.9/\alpha)\alpha f'(0) + (1.2/\alpha)(\alpha/3)f'(0) \\ &= (-0.5 - 0.9 + 0.4)f'(0) = -f'(0). \end{split}$$