Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Problem 1) a) Explain why the function $\zeta(x)$ shown in the figure approaches a Dirac deltafunction $\delta(x)$ in the limit when $\alpha \to 0$. 6 pts

b) Plot the function $\zeta'(x) = d\zeta(x)/dx$, then argue that $\zeta'(x)$ approaches the derivative $\delta'(x)$ of $\delta(x)$ in the limit when $\alpha \to 0$. 8 pts

Hint: You must demonstrate the sifting property of $\delta'(x)$; that is, $\int_{-\infty}^{\infty} f(x)\delta'(x)dx = -f'(0)$ for an arbitrary function $f(x)$ that is continuous and well-behaved in the vicinity of $x = 0$.

Problem 2) The function $f(x) = \cos^2(\pi x)$ is periodic, with period $p = 1$. When raised to the power of a large positive integer n , the function resembles a periodic array of narrow and symmetric pulses of unit height, as seen below. The area under each pulse can be shown to be 10 pts

$$
A_n = \int_{-1/2}^{1/2} \cos^{2n}(\pi x) \, \mathrm{d}x = \frac{(2n-1)!!}{(2n)!!}.
$$

Show that the Fourier transform of $A_n^{-1} \cos^{2n}(\pi x)$ approaches a *comb* function when $n \to \infty$; that is, $\lim_{n\to\infty} \mathcal{F}\{(2n)!! \cos^{2n}(\pi x)/(2n - 1)!!\} = \text{comb}(s)$.

Hint: Use $\cos(\pi x) = (e^{i\pi x} + e^{-i\pi x})/2$ and the binomial expansion $(a + b)^n = \sum_{m=0}^n {n \choose m} a^{n-m} b^m$. Also, recall that $\mathcal{F}\lbrace e^{i2\pi s_0 x}\rbrace = \int_{-\infty}^{\infty} e^{i2\pi s_0 x} e^{-i2\pi s x} dx = \delta(s - s_0)$.

Problem 3) One way to solve the first-order ordinary differential equation $x^2 f'(x) + f(x) = 0$ is to change the independent variable from x to $\eta = x^{-1}$, then use the chain rule of differentiation to transform the above equation into a $1st$ order ODE with constant coefficients for $f(\eta)$. The resulting ODE is easy to solve and substitution for η in $f(\eta)$ would yield the desired solution $f(x)$.

- a) Use the above method to find the solution of the differential equation. 6 pts
- b) Plot the function $f(x)$ over the entire x-axis, paying particular attention to the neighborhood of $x = 0$ and also to the behavior of $f(x)$ when $x \to \pm \infty$. 6 pts

Problem 4) It is well known that the convolution of two *sinc* functions yields another *sinc* function. Specifically, $\operatorname{sinc}(\alpha x) * \operatorname{sinc}(\beta x) = \alpha^{-1} \operatorname{sinc}(\beta x)$, where α and β are real numbers satisfying $\alpha \geq \beta > 0$.

a) Write sinc(αx) * sinc(βx) as a standard convolution integral, then evaluate the integral using complex-plane methods based on the Cauchy-Goursat theorem. (Suggested contours of integration are shown below. The end result of this calculation should be α^{-1} sinc(βx).) 8 pts

b) Use the convolution theorem and the scaling theorem of the Fourier transform theory to demonstrate in a much simpler way that indeed $sinc(\alpha x) * sinc(\beta x) = \alpha^{-1} sinc(\beta x)$. 6 pts

$$
\text{Hint: } \operatorname{sinc}(x) = \sin(\pi x) / (\pi x) = (e^{i\pi x} - e^{-i\pi x}) / (i2\pi x). \text{ Also, } \mathcal{F}\{\operatorname{sinc}(x)\} = \operatorname{rect}(s).
$$