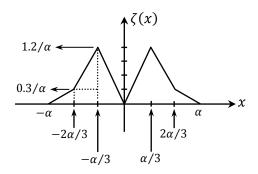
Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

⁶ pts **Problem 1**) a) Explain why the function $\zeta(x)$ shown in the figure approaches a Dirac deltafunction $\delta(x)$ in the limit when $\alpha \to 0$.



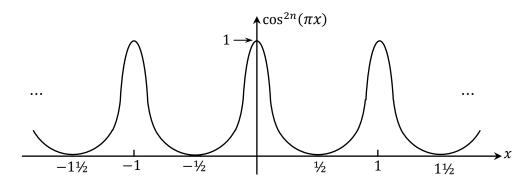
8 pts b) Plot the function $\zeta'(x) = d\zeta(x)/dx$, then argue that $\zeta'(x)$ approaches the derivative $\delta'(x)$ of $\delta(x)$ in the limit when $\alpha \to 0$.

Hint: You must demonstrate the sifting property of $\delta'(x)$; that is, $\int_{-\infty}^{\infty} f(x)\delta'(x)dx = -f'(0)$ for an arbitrary function f(x) that is continuous and well-behaved in the vicinity of x = 0.

^{10 pts} **Problem 2**) The function $f(x) = \cos^2(\pi x)$ is periodic, with period p = 1. When raised to the power of a large positive integer *n*, the function resembles a periodic array of narrow and symmetric pulses of unit height, as seen below. The area under each pulse can be shown to be

$$A_n = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos^{2n}(\pi x) \, \mathrm{d}x = \frac{(2n-1)!!}{(2n)!!}$$

Show that the Fourier transform of $A_n^{-1}\cos^{2n}(\pi x)$ approaches a *comb* function when $n \to \infty$; that is, $\lim_{n\to\infty} \mathcal{F}\{(2n) \| \cos^{2n}(\pi x)/(2n-1) \| \} = \operatorname{comb}(s)$.



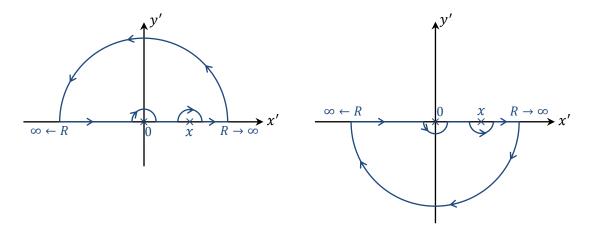
Hint: Use $\cos(\pi x) = (e^{i\pi x} + e^{-i\pi x})/2$ and the binomial expansion $(a + b)^n = \sum_{m=0}^n \binom{n}{m} a^{n-m} b^m$. Also, recall that $\mathcal{F}\{e^{i2\pi s_0 x}\} = \int_{-\infty}^{\infty} e^{i2\pi s_0 x} e^{-i2\pi s x} dx = \delta(s - s_0)$.

Problem 3) One way to solve the first-order ordinary differential equation $x^2 f'(x) + f(x) = 0$ is to change the independent variable from x to $\eta = x^{-1}$, then use the chain rule of differentiation to transform the above equation into a 1st order ODE with constant coefficients for $f(\eta)$. The resulting ODE is easy to solve and substitution for η in $f(\eta)$ would yield the desired solution f(x).

- 6 pts a) Use the above method to find the solution of the differential equation.
- 6 pts b) Plot the function f(x) over the entire x-axis, paying particular attention to the neighborhood of x = 0 and also to the behavior of f(x) when $x \to \pm \infty$.

Problem 4) It is well known that the convolution of two *sinc* functions yields another *sinc* function. Specifically, $sinc(\alpha x) * sinc(\beta x) = \alpha^{-1}sinc(\beta x)$, where α and β are real numbers satisfying $\alpha \ge \beta > 0$.

8 pts a) Write $sinc(\alpha x) * sinc(\beta x)$ as a standard convolution integral, then evaluate the integral using complex-plane methods based on the Cauchy-Goursat theorem. (Suggested contours of integration are shown below. The end result of this calculation should be $\alpha^{-1}sinc(\beta x)$.)



6 pts b) Use the convolution theorem and the scaling theorem of the Fourier transform theory to demonstrate in a much simpler way that indeed $sinc(\alpha x) * sinc(\beta x) = \alpha^{-1}sinc(\beta x)$.

Hint:
$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{(\pi x)} = \frac{(e^{i\pi x} - e^{-i\pi x})}{(i2\pi x)}$$
. Also, $\mathcal{F}\{\operatorname{sinc}(x)\} = \operatorname{rect}(s)$.