Problem 4) Since ψ is the complement of φ, we have $\sin \psi=|\cos \varphi|$. (The absolute value of $\cos \varphi$ must be used here, in the event that $1 / 2 \pi \leq \varphi<\pi$, which would make $\cos \varphi$ negative.) It is seen that $h_{1}=b \sin \theta$, and $h_{2}=h_{1} \sin \psi=b \sin \theta \sin \psi$, and $h_{3}=h_{2} \sin \psi=b \sin \theta \sin ^{2} \psi$, and so on. So long as $\sin \psi<1$ (i.e., $\psi \neq 1 / 2 \pi$, or, equivalently, $0<\varphi<\pi$), we may use the closed form of the resulting geometric series to arrive at

$$
\begin{equation*}
\sum_{n=1}^{\infty} h_{n}=b \sin \theta\left(1+\sin \psi+\sin ^{2} \psi+\sin ^{3} \psi+\cdots\right)=\frac{b \sin \theta}{1-\sin \psi}=\frac{b \sin \theta}{1-|\cos \varphi|} \tag{1}
\end{equation*}
$$

Digression. The above formula can also be expressed in terms of the lengths a or c (instead of b) by invoking the well-known triangle identity $\frac{a}{\sin \theta}=\frac{b}{\sin \varphi}=\frac{c}{\sin (\theta+\varphi)}$, in which case we will have

$$
\begin{equation*}
\sum_{n=1}^{\infty} h_{n}=\frac{b \sin \theta}{1-|\cos \varphi|}=\frac{a \sin \varphi}{1-|\cos \varphi|}=\frac{c \sin \theta \sin \varphi}{(1-|\cos \varphi|) \sin (\theta+\varphi)} . \tag{2}
\end{equation*}
$$

If we drag the vertex B to the left or the right along $A B$, the angle φ will increase or decrease without affecting b or θ. The first expression for $\sum h_{n}$ in Eq.(2) then reveals that $\sum h_{n}$ goes to infinity when φ approaches zero, and that it approaches $b \sin \theta$ when $\varphi \rightarrow 1 / 2 \pi$. If φ rises above $1 / 2 \pi$, the sum increases again and eventually goes to infinity as $\varphi \rightarrow \pi$.

If we drag the vertex A to the right or the left along the straight line $A B$ (without changing a or φ), then, in accordance with the second expression in Eq.(2), $\sum h_{n}$ remains intact. And if we drag the vertex C upward along $A D$, then c remains constant while both θ and φ move toward $1 / 2 \pi$, in which case the third expression in Eq.(2) indicates that $\sum h_{n} \rightarrow \infty$ as $\sin (\theta+\varphi) \rightarrow 0$. Similar arguments can be made if the vertex C moves one way or another along $A C$ or along $B C$.

