Problem 4) Since ψ is the complement of φ , we have $\sin \psi = |\cos \varphi|$. (The absolute value of $\cos \varphi$ must be used here, in the event that $\frac{1}{2}\pi \leq \varphi < \pi$, which would make $\cos \varphi$ negative.) It is seen that $h_1 = b \sin \theta$, and $h_2 = h_1 \sin \psi = b \sin \theta \sin \psi$, and $h_3 = h_2 \sin \psi = b \sin \theta \sin^2 \psi$, and so on. So long as $\sin \psi < 1$ (i.e., $\psi \neq \frac{1}{2}\pi$, or, equivalently, $0 < \varphi < \pi$), we may use the closed form of the resulting geometric series to arrive at

$$\sum_{n=1}^{\infty} h_n = b \sin \theta \left(1 + \sin \psi + \sin^2 \psi + \sin^3 \psi + \cdots \right) = \frac{b \sin \theta}{1 - \sin \psi} = \frac{b \sin \theta}{1 - |\cos \varphi|}$$
(1)

Digression. The above formula can also be expressed in terms of the lengths *a* or *c* (instead of *b*) by invoking the well-known triangle identity $\frac{a}{\sin \theta} = \frac{b}{\sin \varphi} = \frac{c}{\sin(\theta + \varphi)}$, in which case we will have

$$\sum_{n=1}^{\infty} h_n = \frac{b\sin\theta}{1 - |\cos\varphi|} = \frac{a\sin\varphi}{1 - |\cos\varphi|} = \frac{c\sin\theta\sin\varphi}{(1 - |\cos\varphi|)\sin(\theta + \varphi)}.$$
(2)

If we drag the vertex *B* to the left or the right along *AB*, the angle φ will increase or decrease without affecting *b* or θ . The first expression for $\sum h_n$ in Eq.(2) then reveals that $\sum h_n$ goes to infinity when φ approaches zero, and that it approaches $b \sin \theta$ when $\varphi \to \frac{1}{2}\pi$. If φ rises above $\frac{1}{2}\pi$, the sum increases again and eventually goes to infinity as $\varphi \to \pi$.

If we drag the vertex A to the right or the left along the straight line AB (without changing a or φ), then, in accordance with the second expression in Eq.(2), $\sum h_n$ remains intact. And if we drag the vertex C upward along AD, then c remains constant while both θ and φ move toward $\frac{1}{2}\pi$, in which case the third expression in Eq.(2) indicates that $\sum h_n \to \infty$ as $\sin(\theta + \varphi) \to 0$. Similar arguments can be made if the vertex C moves one way or another along AC or along BC.