Problem 3) a) $\quad r(\varphi)=R e^{-\alpha \varphi} \quad \rightarrow \quad \mathrm{d} r=-\alpha R e^{-\alpha \varphi} \mathrm{d} \varphi=-\alpha r(\varphi) \mathrm{d} \varphi$

$$
\begin{equation*}
\rightarrow \quad \mathrm{d} \ell=\sqrt{(r \mathrm{~d} \varphi)^{2}+(\mathrm{d} r)^{2}}=\sqrt{1+\alpha^{2}} r(\varphi) \mathrm{d} \varphi . \tag{1}
\end{equation*}
$$

b) The total length ℓ of the spiral is given by

$$
\begin{align*}
\ell=\int_{\varphi=0}^{\infty} \mathrm{d} \ell & =\int_{0}^{\infty} \sqrt{1+\alpha^{2}} r(\varphi) \mathrm{d} \varphi=\sqrt{1+\alpha^{2}} R \int_{0}^{\infty} e^{-\alpha \varphi} \mathrm{d} \varphi \\
& =-\left.\sqrt{1+\alpha^{2}} R \alpha^{-1} e^{-\alpha \varphi}\right|_{\varphi=0} ^{\infty}=\sqrt{1+\alpha^{-2}} R \tag{2}
\end{align*}
$$

c) In accordance with Eq.(2), for large values of α, the length ℓ of the spiral is only slightly greater than R; that is, $\ell \cong R+1 / 2\left(R / \alpha^{2}\right)$, whereas for small values of α, the length ℓ very nearly equals R / α.

