Problem 2) The first-order partial derivatives of $f(x, y)$ are

$$
\begin{align*}
& \partial_{x} f=\frac{\partial f}{\partial x}=y\left(1-4 x^{2}\right) e^{-2\left(x^{2}+y^{2}\right)}, \tag{1}\\
& \partial_{y} f=\frac{\partial f}{\partial y}=x\left(1-4 y^{2}\right) e^{-2\left(x^{2}+y^{2}\right)} . \tag{2}
\end{align*}
$$

Setting both $\partial_{x} f$ and $\partial_{y} f$ equal to zero, we find five different solutions that represent the locations of the minima, maxima, and saddle-points of $f(x, y)$, namely,

$$
\begin{gather*}
\partial_{x} f=\partial_{y} f=0 \rightarrow \quad\left(x_{0}, y_{0}\right)=(0,0) ; \quad\left(x_{1}, y_{1}\right)=(1 / 2,1 / 2) ; \quad\left(x_{2}, y_{2}\right)=(1 / 2,-1 / 2) ; \\
\left(x_{3}, y_{3}\right)=(-1 / 2,1 / 2) ; \quad\left(x_{4}, y_{4}\right)=(-1 / 2,-1 / 2) . \tag{3}
\end{gather*}
$$

To determine which one of the five points in Eq.(3) corresponds to a minimum, maximum, or saddle point, we need to compute the second-order partial derivatives of $f(x, y)$, as follows:

$$
\begin{align*}
& \partial_{x x} f=\frac{\partial^{2} f}{\partial x^{2}}=-\left[8 x y+4 x y\left(1-4 x^{2}\right)\right] e^{-2\left(x^{2}+y^{2}\right)}=4 x y\left(4 x^{2}-3\right) e^{-2\left(x^{2}+y^{2}\right)}, \tag{4}\\
& \partial_{y y} f=\frac{\partial^{2} f}{\partial y^{2}}=-\left[8 x y+4 x y\left(1-4 y^{2}\right)\right] e^{-2\left(x^{2}+y^{2}\right)}=4 x y\left(4 y^{2}-3\right) e^{-2\left(x^{2}+y^{2}\right)}, \tag{5}\\
& \partial_{x y} f=\partial_{y x} f=\frac{\partial^{2} f}{\partial x \partial y}=\left(4 x^{2}-1\right)\left(4 y^{2}-1\right) e^{-2\left(x^{2}+y^{2}\right)} . \tag{6}
\end{align*}
$$

These second-order partial derivatives, when evaluated at the five points listed in Eq.(3), yield

$$
\begin{array}{llll}
\text { At }\left(x_{0}, y_{0}\right)=(0,0): & \left.\partial_{x x} f\right|_{\left(x_{0}, y_{0}\right)}=0, & \left.\partial_{y y} f\right|_{\left(x_{0}, y_{0}\right)}=0, & \left.\partial_{x y} f\right|_{\left(x_{0}, y_{0}\right)}=1 . \\
\text { At }\left(x_{1}, y_{1}\right)=(1 / 2,1 / 2): & \left.\partial_{x x} f\right|_{\left(x_{1}, y_{1}\right)}=-2 e^{-1}, & \left.\partial_{y y} f\right|_{\left(x_{1}, y_{1}\right)}=-2 e^{-1}, & \left.\partial_{x y} f\right|_{\left(x_{1}, y_{1}\right)}=0 . \\
\text { At }\left(x_{2}, y_{2}\right)=(1 / 2,-1 / 2): & \left.\partial_{x x} f\right|_{\left(x_{2}, y_{2}\right)}=2 e^{-1}, & \left.\partial_{y y} f\right|_{\left(x_{2}, y_{2}\right)}=2 e^{-1}, & \left.\partial_{x y} f\right|_{\left(x_{2}, y_{2}\right)}=0 . \\
\text { At }\left(x_{3}, y_{3}\right)=(-1 / 2,1 / 2): & \left.\partial_{x x} f\right|_{\left(x_{3}, y_{3}\right)}=2 e^{-1}, & \left.\partial_{y y} f\right|_{\left(x_{3}, y_{3}\right)}=2 e^{-1}, & \left.\partial_{x y} f\right|_{\left(x_{3}, y_{3}\right)}=0 . \\
\text { At }\left(x_{4}, y_{4}\right)=(-1 / 2,-1 / 2): & \left.\partial_{x x} f\right|_{\left(x_{4}, y_{4}\right)}=-2 e^{-1}, & \left.\partial_{y y} f\right|_{\left(x_{4}, y_{4}\right)}=-2 e^{-1}, & \left.\partial_{x y} f\right|_{\left(x_{4}, y_{4}\right)}=0 . \tag{11}
\end{array}
$$

There will be a peak (maximum) or a valley (minimum) wherever $\left(\partial_{x x} f\right)\left(\partial_{y y} f\right)>\left(\partial_{x y} f\right)^{2}$. This means that $\left(x_{0}, y_{0}\right)$ is neither the location of a peak nor a valley, but that the remaining four points are. At $\left(x_{1}, y_{1}\right)$ and $\left(x_{4}, y_{4}\right)$, we have $\partial_{x x} f<0$ (and also $\partial_{y y} f<0$); consequently, both of these points correspond to peaks (or maxima) of $f(x, y)$. In contrast, $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are locations of valleys (or minima) of $f(x, y)$, since, at both points, $\partial_{x x} f>0$ (and also $\partial_{y y} f>0$).

As for $\left(x_{0}, y_{0}\right)=(0,0)$, given that $\left(\partial_{x x} f\right)\left(\partial_{y y} f\right)<\left(\partial_{x y} f\right)^{2}$ at this point, it must be the location of a saddle point. Now, in the vicinity of $\left(x_{0}, y_{0}\right)$, we can write

$$
\begin{align*}
\Delta f=f(x, y)-f\left(x_{0}, y_{0}\right)= & \left(\partial_{x} f\right)\left(x-x_{0}\right)+\left(\partial_{y} f\right)\left(y-y_{0}\right)+1 / 2\left(\partial_{x x} f\right)\left(x-x_{0}\right)^{2}+ \\
& +1 / 2\left(\partial_{y y} f\right)\left(y-y_{0}\right)^{2}+\left(\partial_{x y} f\right)\left(x-x_{0}\right)\left(y-y_{0}\right)+\cdots \cong x y . \tag{12}
\end{align*}
$$

It is seen that, in the $1^{\text {st }}$ and $3^{\text {rd }}$ quadrants of the $x y$-plane, where $x y>0$, we have $\Delta f>0$, which indicates that $f(x, y)$ rises above $f\left(x_{0}, y_{0}\right)=f(0,0)=0$. In contrast, in the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants, where $x y<0$, we have $\Delta f<0$, indicating that $f(x, y)$ drops below $f\left(x_{0}, y_{0}\right)$.

