Problem 5) We apply the method of stationary-phase with $f(x)=\exp \left(-x^{2}\right)$ and $g(x)=\sqrt{1-x^{2}}$ to this integral. The stationary point is found by setting $g^{\prime}(x)=-x\left(1-x^{2}\right)^{-1 / 2}=0$, from which the sole stationary point is found to be $x_{0}=0$. This is an acceptable stationary point as it resides within the $(-1,1)$ integration range. At the stationary point, the value of $f(x)$ is 1 , that of $g(x)$ is also 1 , and the value of the $2^{\text {nd }}$ derivative $g^{\prime \prime}(x)=-\left(1-x^{2}\right)^{-3 / 2}$ at $x=x_{0}$ is found to be -1 . We have shown in the class that the approximate value of the integral is

$$
I \approx \sqrt{\frac{2 \pi}{\left|\eta g^{\prime \prime}\left(x_{0}\right)\right|}} f\left(x_{0}\right) \exp \left[\mathrm{i} \eta g\left(x_{0}\right)\right] \exp (\pm \mathrm{i} \pi / 4) ; \quad \pm \text { depending on whether } \eta g^{\prime \prime}\left(x_{0}\right) \geq 0
$$

Substitution for the various parameters in the above expression thus yields

$$
I \approx \sqrt{2 \pi / \eta} \exp [\mathrm{i}(\eta-\pi / 4)] .
$$

It is instructive to numerically evaluate the integral for large values of η to see how close the approximate value comes to the actual value of the integral. A Matlab® program for such a calculation is listed below.

```
%
% Evaluating the Stationary-Phase Approximation to an Integral
%
clear all
eta=25;
nmax=1000;
deltax=2/nmax;
%
I=0;
for n=1:nmax
        x=-1+(n-1)*deltax;
        x2=x*x;
        I=I+exp(-x2+i*eta*sqrt(1-x2));
end
Integral=I*deltax
%
Approximation=sqrt(2*pi/eta)*exp(i*(eta-pi/4))
%
%End of Program
```

