Problem 5) a) The membrane's local slopes along the x and y axes, namely, $\partial_{x} z(x, y, t)$ and $\partial_{y} z(x, y, t)$, can be approximated via $\tan \theta \cong \sin \theta$ to yield the vertical component of the force acting on the infinitesimal $\Delta x \times \Delta y$ rectangular section of the membrane, as follows:

$$
\begin{equation*}
F_{z}=T \Delta y\left[\partial_{x} z(x+1 / 2 \Delta x, y, t)-\partial_{x} z(x-1 / 2 \Delta x, y, t)\right]+T \Delta x\left[\partial_{y} z(x, y+1 / 2 \Delta y, t)-\partial_{y} z(x, y-1 / 2 \Delta y, t)\right] . \tag{1}
\end{equation*}
$$

Adding the friction force $-\beta \Delta x \Delta y \partial_{t} z(x, y, t)$, which acts in opposition to the local velocity, to the above tensile force, then equating the total force with mass ($\rho \Delta x \Delta y$) times the acceleration $\partial_{t}^{2} z(x, y, t)$ - in accordance with Newton's second law-one arrives at the following equation of motion:

$$
\begin{equation*}
v^{2}\left[\frac{\partial^{2} z(x, y, t)}{\partial x^{2}}+\frac{\partial^{2} z(x, y, t)}{\partial y^{2}}\right]=\frac{\partial^{2} z(x, y, t)}{\partial t^{2}}+\gamma \frac{\partial z(x, y, t)}{\partial t} . \tag{2}
\end{equation*}
$$

b) The boundary conditions on the three sides where the membrane is firmly attached to the drumhead are $z(x=0, y, t)=z\left(x=L_{x}, y, t\right)=z(x, y=0, t)=0$. On the fourth side, where the membrane is free to vibrate in the z direction, we must have $\partial_{y} z\left(x, y=L_{y}, t\right)=0$.

The initial position $z(x, y, t=0)$ and the initial velocity $\partial_{t} z(x, y, t=0)$ at $t=0$ are known functions of the spatial coordinates (x, y). These constitute the initial conditions for our vibrating membrane.
c) Invoking the method of separation of variables, we write $z(x, y, t)=f(x) g(y) h(t)$. Substitution into the equation of motion then yields

$$
\begin{equation*}
v^{2}\left[\frac{f^{\prime \prime}(x)}{f(x)}+\frac{g^{\prime \prime}(y)}{g(y)}\right]=\frac{h^{\prime \prime}(t)+\gamma h^{\prime}(t)}{h(t)}=c . \tag{3}
\end{equation*}
$$

On the left-hand-side of the above equation, the first term must equal a constant c_{1}, that is, $f^{\prime \prime}(x)=c_{1} f(x)$. The boundary conditions at $x=0$ and $x=L_{x}$ demand that the solution to this equation be $f(x)=\sin \left(m \pi x / L_{x}\right)$, where m is an arbitrary positive integer. Consequently, $c_{1}=-\left(m \pi / L_{x}\right)^{2}$.

As for the second term on the left-hand-side of Eq.(3), we must have $g^{\prime \prime}(y)=c_{2} g(y)$. The boundary conditions now demand that $g(y)=\sin \left[(n-1 / 2) \pi y / L_{y}\right]$, where n is another arbitrary positive integer. Consequently, $c_{2}=-\left[(n-1 / 2) \pi / L_{y}\right]^{2}$.

The constant c is thus seen to be equal to $\left(c_{1}+c_{2}\right) v^{2}=-\pi^{2} v^{2}\left[\left(m / L_{x}\right)^{2}+(n-1 / 2)^{2} / L_{y}^{2}\right]$. The solutions of the ordinary differential equation $h^{\prime \prime}(t)+\gamma h^{\prime}(t)-c h(t)=0$ are obtained by setting $h(t)=\exp (\eta t)$, which yields $\eta^{2}+\gamma \eta-c=0$. The solutions of this quadratic equation are readily found as $\eta^{ \pm}=-1 / 2 \gamma \pm \sqrt{1 / 4 \gamma^{2}-\pi^{2} v^{2}\left[\left(m / L_{x}\right)^{2}+(n-1 / 2)^{2} / L_{y}^{2}\right]}$. Depending on the value of the constant inside the radical, the solutions η^{+}and η^{-}may be
i) distinct complex conjugates - i.e., the case of under-damped vibrations;
ii) real and equal - i.e., the case of critically-damped vibrations;
iii) real and distinct - i.e., the case of over-damped vibrations.

The general solution for the time-dependent function is $h(t)=A \exp \left(\eta^{+} t\right)+B \exp \left(\eta^{-} t\right)$ when $\eta^{+} \neq \eta^{-}$, and $h(t)=A \exp (\eta t)+B t \exp (\eta t)$ when $\eta^{+}=\eta^{-}=\eta$. In what follows, we shall omit the case of critical damping. The admissible vibrational modes in cases of underdamped and over-damped oscillations are thus given by

$$
\begin{equation*}
z_{m n}(x, y, t)=\left[A_{m n} \exp \left(\eta_{m n}^{+} t\right)+B_{m n} \exp \left(\eta_{m n}^{-} t\right)\right] \sin \left(m \pi x / L_{x}\right) \sin \left[(n-1 / 2) \pi y / L_{y}\right] . \tag{4}
\end{equation*}
$$

The $A_{m n}$ and $B_{m n}$ for over-damped oscillations are real-valued constant coefficients to be determined by matching the initial conditions at $t=0$. In the case of under-damped oscillations, where $\eta_{m n}^{+}$and $\eta_{m n}^{-}$are a pair of complex conjugates, we will have $A_{m n}=B_{m n}^{*}$, in which case the real and imaginary parts of these coefficients are, once again, determined by matching the initial conditions at $t=0$. A similar procedure, of course, can be followed in cases of critical-damping.
d) The general solution of the wave equation, Eq.(2), subject to the aforementioned boundary conditions is a superposition of all the vibrational modes given in Eq.(4), that is,

$$
\begin{equation*}
z(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[A_{m n} \exp \left(\eta_{m n}^{+} t\right)+B_{m n} \exp \left(\eta_{m n}^{-} t\right)\right] \sin \left(m \pi x / L_{x}\right) \sin \left[(n-1 / 2) \pi y / L_{y}\right] . \tag{5}
\end{equation*}
$$

The unknown coefficients $A_{m n}$ and $B_{m n}$ must be obtained from the initial conditions. Upon expanding $z(x, y, t=0)$ and $\partial_{t} z(x, y, t=0)$ in their respective Fourier series, then matching the corresponding Fourier coefficients with those given by (or derived from) Eq.(5), the general solution $z(x, y, t)$ for all times $t \geq 0$ will be uniquely identified.

