Problem 5) a) Differentiating $z(r, \phi, t)$ with respect to time and setting $t=0$, we find

$$
\left.\frac{\partial z(r, \phi, t)}{\partial t}\right|_{t=0}=-\sum_{n=1}^{\infty} c_{n} \omega_{n} J_{0}\left(r_{0 n} r / R\right) \sin \left(\omega_{n} t\right)_{t=0}=0
$$

The present problem is a special case of Problem 82, from which we now borrow the following results.
b) The vibration frequency ω_{n} is denoted by C in Problem 82. Therefore, $\omega_{n}=v r_{0 n} / R$.
c) The initial condition is obtained by setting $t=0$ in the general expression of the vibration amplitude, that is,

$$
h(r)=\sum_{n=1}^{\infty} c_{n} J_{0}\left(r_{0 n} r / R\right)
$$

To determine the coefficients c_{n}, we take advantage of the orthogonality of the functions $J_{0}\left(r_{0 n} r / R\right)$ over the interval $[0, R]$. In accordance with the Sturm-Liouville theory, the Bessel functions appearing in the above series are orthogonal with a weighting function $r(x)=x$. We thus write

$$
\int_{0}^{R} r h(r) J_{0}\left(r_{0 m} r / R\right) \mathrm{d} r=\sum_{n=1}^{\infty} c_{n} \int_{0}^{R} r J_{0}\left(r_{0 m} r / R\right) J_{0}\left(r_{0 n} r / R\right) \mathrm{d} r=c_{m} \int_{0}^{R} r J_{0}^{2}\left(r_{0 m} r / R\right) \mathrm{d} r .
$$

The coefficient c_{m} is readily found to be

$$
C_{m}=\frac{\int_{0}^{R} r h(r) J_{0}\left(r_{0 m} r / R\right) \mathrm{d} r}{\int_{0}^{R} r J_{0}^{2}\left(r_{0 m} r / R\right) \mathrm{d} r} .
$$

