Problem 4) One may write $f(x)$ in several different ways using comb functions, delta-functions, and various combinations thereof. Here are three different ways of expressing the same function:
a) $f(x)=\frac{1}{3} \operatorname{comb}\left(\frac{x}{3}\right)+\frac{1}{6} \operatorname{comb}\left(\frac{x-1}{3}\right) \underset{\uparrow}{\rightarrow} \quad F(s)=\operatorname{comb}(3 s)+\frac{1}{2} \exp (-\mathrm{i} 2 \pi s) \operatorname{comb}(3 s)$.

> scaling and shift theorems

Now, the function $F(s)=\left[1+\frac{1}{2} \exp (-\mathrm{i} 2 \pi s)\right] \operatorname{comb}(3 s)$ is periodic with a period of 1.0 , because $\exp (-\mathrm{i} 2 \pi s)$ has period 1.0 along the s-axis, while comb(3s) has a period of $1 / 3$. We thus need to identify only the magnitudes of the three delta-functions located at $s=0,1 / 3$, and $2 / 3$. Noting that each of the delta-functions comprising comb(3s) has an amplitude of $1 / 3$, the general formula for the magnitude of the delta-function located at $s_{n}=n / 3$ is $\frac{1}{3}\left[1+\frac{1}{2} \exp (-i 2 \pi n / 3)\right]$. Thus the delta-function located at $s=s_{0}$ has amplitude $1 / 2$, that at $s=s_{1}$ has amplitude $1 / 4(1-\mathrm{i} / \sqrt{3})$, and that at $s=s_{2}$ has amplitude $1 / 4(1+\mathrm{i} / \sqrt{3})$.
b) $f(x)=\left[\delta(x)+\frac{1}{2} \delta(x-1)\right] * \frac{1}{3} \operatorname{comb}\left(\frac{x}{3}\right) \rightarrow F(s)=\left[1+\frac{1}{2} \exp (-\mathrm{i} 2 \pi s)\right] \operatorname{comb}(3 s)$.
c) $f(x)=\operatorname{comb}(x)-\frac{1}{6} \operatorname{comb}\left(\frac{x-1}{3}\right)-\frac{1}{3} \operatorname{comb}\left(\frac{x-2}{3}\right)$. In this expression, the first comb function places a unit-magnitude delta-function at $x=0, \pm 1, \pm 2$, etc. The second term reduces from 1 to $1 / 2$ the amplitude of the delta-functions at $x=-5,-2,1,4,7$, and so on. The third term eliminates the delta-functions at $x=-4,-1,2,5,8$, etc. Straightforward Fourier transformation with the aid of scaling and shift theorems then yields:

$$
F(s)=\operatorname{comb}(s)-\frac{1}{2} \exp (-\mathrm{i} 2 \pi s) \operatorname{comb}(3 s)-\exp (-\mathrm{i} 4 \pi s) \operatorname{comb}(3 s) .
$$

As before, this is a periodic function with period 3. The magnitudes of the delta-functions, located at $s_{0}=0, s_{1}=1 / 3$ and $s_{2}=2 / 3$ are found from the above expression to be $1 / 2,1 / 4(1-\mathrm{i} / \sqrt{3})$, and $1 / 4(1+\mathrm{i} / \sqrt{3})$, confirming the preceding results.

