Problem 4) a) The derivative of $\sinh x$ is $\cosh x$, while the derivative of $\cosh x$ is $\sinh x$. At $x=0$, we have $\sinh (0)=0$ and $\cosh (0)=1$. Therefore,
Taylor series: $f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(0) x^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0) x^{3}+\cdots$

$$
\begin{aligned}
& \sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \\
& \cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

b) The defining property of an even function is $f(x)=f(-x)$; consequently, $f^{\prime}(x)=-f^{\prime}(-x)$. The only way to satisfy this equation at $x=0$ is to have $f^{\prime}(0)=0$. Taking the next derivative, we find $f^{\prime \prime}(x)=f^{\prime \prime}(-x)$, which does not impose any constraints on the value of $f^{\prime \prime}(0)$. However, the next derivative gives $f^{\prime \prime \prime}(x)=-f^{\prime \prime \prime}(-x)$, which requires that $f^{\prime \prime \prime}(0)=0$. It is thus seen that the $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}, 7^{\text {th }}, \cdots$ derivatives of $f(x)$ at $x=0$ are all equal to zero. Consequently, the Taylor series expansion of $f(x)$ is comprised only of even powers of x.

The defining property of an odd function is $g(x)=-g(-x)$; consequently, $g^{\prime}(x)=g^{\prime}(-x)$, and $g^{\prime \prime}(x)=-g^{\prime \prime}(-x)$. The only way to satisfy the last equation at $x=0$ is to have $g^{\prime \prime}(0)=0$. The next derivative gives $g^{\prime \prime \prime}(x)=g^{\prime \prime \prime}(-x)$, which does not impose any constraints on the value of $g^{\prime \prime \prime}(0)$. Taking the next derivative, however, gives $g^{\prime \prime \prime \prime}(x)=-g^{\prime \prime \prime \prime}(-x)$, which requires $g^{\prime \prime \prime \prime}(0)=0$. It is thus seen that the $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, 8^{\text {th }}, \cdots$ derivatives of $g(x)$ at $x=0$ are all equal to zero. Consequently, the Taylor series expansion of $g(x)$ is comprised only of odd powers of x.
c) The function $\tanh (x)$ is an odd function of x, because $\sinh (x)$ is odd while $\cosh (x)$ is even. The Taylor series expansion of $\tanh (x)$ may thus be written as $\tanh (x)=\sum_{n=0}^{\infty} a_{n} x^{2 n+1}$.
d)

$$
\begin{aligned}
& \tanh (x)=\sum_{n=0}^{\infty} a_{n} x^{2 n+1}=\left[\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}\right] /\left[\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}\right] \\
\rightarrow & \left(\sum_{n=0}^{\infty} a_{n} x^{2 n+1}\right)\left[\sum_{m=0}^{\infty} \frac{x^{2 m}}{(2 m)!}\right]=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \longleftarrow \begin{array}{|c}
\text { Changing a dummy } \\
\text { index from } n \text { to } m .
\end{array} \\
\rightarrow & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{a_{n}}{(2 m)!} x^{2(n+m)+1}=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \\
\rightarrow & \sum_{k=0}^{\infty}\left[\sum_{m=0}^{k} \frac{a_{k-m}}{(2 m)!}\right] x^{2 k+1}=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \longleftarrow \begin{array}{|cc}
\text { Summing along diagonals in } \\
\text { the mn-plane; setting } k=m+n .
\end{array} \\
\rightarrow & \sum_{m=0}^{n} \frac{a_{n-m}}{(2 m)!}=\frac{1}{(2 n+1)!} \quad(n=0,1,2,3, \ldots) . \longleftarrow \begin{array}{l}
\text { Changing dummy } \\
\text { index k back to } n .
\end{array}
\end{aligned}
$$

The first few coefficients of the Taylor series expansion of $\tanh (x)$ around $x=0$ are found to be

$$
\begin{array}{lll}
n=0 & \rightarrow & a_{0}=1 ; \\
n=1 & \rightarrow \frac{a_{1}}{0!}+\frac{a_{0}}{2!}=\frac{1}{3!} \rightarrow & a_{1}=-\frac{1}{3} \\
n=2 & \rightarrow \frac{a_{2}}{0!}+\frac{a_{1}}{2!}+\frac{a_{0}}{4!}=\frac{1}{5!} \rightarrow & a_{2}=\frac{2}{15} \\
n=3 & \rightarrow \frac{a_{3}}{0!}+\frac{a_{2}}{2!}+\frac{a_{1}}{4!}+\frac{a_{0}}{6!}=\frac{1}{7!} \rightarrow & a_{3}=-\frac{17}{315} .
\end{array}
$$

