Problem 4)

$$
\begin{gathered}
f\left(p_{1}, p_{2}, \cdots, p_{N}\right)=-\sum_{n=1}^{N} p_{n} \ln \left(p_{n}\right)+\lambda \sum_{n=1}^{N} p_{n} . \\
\frac{\partial f}{\partial p_{n}}=-\ln \left(p_{n}\right)-1+\lambda=0 \quad \rightarrow \quad p_{n}=e^{\lambda-1} \quad(n=1,2,3, \cdots, N) .
\end{gathered}
$$

All p_{n} are therefore equal to $e^{\lambda-1}$, which makes them equal to each other. Considering that $\sum_{n=1}^{N} p_{n}=1$, we conclude that $p_{1}=p_{2}=\cdots=p_{N}=1 / N$. The Shannon entropy $H\left(p_{1}, p_{2}, \ldots, p_{N}\right)$ is thus maximized when all the various outcomes of the experiment are equally likely. The maximum entropy is given by $-\sum_{n=1}^{N} p_{n} \ln \left(p_{n}\right)=-\sum_{n=1}^{N} N^{-1} \ln \left(N^{-1}\right)=\ln N$.

