Problem 4) For a given value of n, we are asked to maximize the product $x_{1} x_{2} \cdots x_{n}$ subject to the constraint $x_{1}+x_{2}+\cdots+x_{n}=L$. In accordance with the method of Lagrange multipliers, we form the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}+\lambda\left(x_{1}+x_{2}+\cdots+x_{n}\right)$, then set its derivatives with respect to $x_{1}, x_{2}, \ldots, x_{n}$ equal to zero, as follows:

$$
\begin{aligned}
& \partial f / \partial x_{1}=x_{2} x_{3} \cdots x_{n}+\lambda=0 \quad \rightarrow \quad x_{2} x_{3} \cdots x_{n}=-\lambda ; \\
& \partial f / \partial x_{2}=x_{1} x_{3} \cdots x_{n}+\lambda=0 \quad \rightarrow \quad x_{1} x_{3} \cdots x_{n}=-\lambda ; \\
& \vdots \\
& \partial f / \partial x_{n}=x_{1} x_{2} \cdots x_{n-1}+\lambda=0 \quad \rightarrow \quad x_{1} x_{2} \cdots x_{n-1}=-\lambda .
\end{aligned}
$$

Dividing the first of the above equations by the second yields $x_{2} / x_{1}=1$, revealing that x_{1} and x_{2} must be equal. Similarly, dividing the first equation by the third shows that $x_{1}=x_{3}$, and so on. The solution of the above equations is thus given by $x_{1}=x_{2}=\cdots=x_{n}=\sqrt[n]{-\lambda}$. In the next step, we substitute the above solution into the constraint equation $x_{1}+x_{2}+\cdots+x_{n}=L$ to find the value of λ. We will have $n \sqrt[n]{-\lambda}=L$, which yields $\lambda=-(L / n)^{n}$. The optimum solution for the lengths of the various segments is thus found to be $x_{1}=x_{2}=\cdots=x_{n}=\sqrt[n]{-\lambda}=L / n$.

