Problem 4) The function to be minimized is $S(x, y, z)=2 x z+2 y z+x y$. The constraint is $V(x, y, z)=x y z=V_{0}$. We must thus form the function $S+\lambda V$, where $\lambda$ is the Lagrange multiplier, then set its partial derivatives with respect to $x, y$, and $z$ equal to zero. We will have

$$
\begin{gathered}
\partial(S+\lambda V) / \partial x=2 z+y+\lambda y z=0 \quad \rightarrow \quad y=-2 z /(1+\lambda z), \\
\partial(S+\lambda V) / \partial y=2 z+x+\lambda x z=0 \quad \rightarrow \quad x=-2 z /(1+\lambda z), \\
\partial(S+\lambda V) / \partial z=2 x+2 y+\lambda x y=0 .
\end{gathered}
$$

The first two equations yield $x=y$, which, placed into the third equation, yields $4 x+\lambda x^{2}=0$. Aside from the trivial solution, $x=0$, the only solution to this equation is $x=-4 / \lambda$. We already know that $x=y$; therefore, $y=-4 / \lambda$. Substituting one of these solutions into the first or second of the above equations, we find $-4 / \lambda=-2 z /(1+\lambda z) \rightarrow z=-2 / \lambda$.

Having found the optimum values of $x, y$, and $z$ in terms of $\lambda$, we now use the constraint $V=V_{0}$ to determine the value of $\lambda$, as follows:

$$
V(x, y, z)=x y x=-32 / \lambda^{3}=V_{0} \quad \rightarrow \quad \lambda=-2^{5 / 3} V_{0}^{-1 / 3}
$$

Consequently, $x_{0}=y_{0}=-4 / \lambda=\left(2 V_{0}\right)^{1 / 3}$ and $z_{0}=-2 / \lambda=\left(V_{o} / 4\right)^{1 / 3}$. It is now easy to verify that $V\left(x_{0}, y_{0}, z_{0}\right)=V_{0}$ and $S\left(x_{0}, y_{0}, z_{0}\right)=2 x_{0} z_{0}+2 y_{0} z_{0}+x_{0} y_{0}=3\left(2 V_{0}\right)^{2 / 3}$. Any other choice for $x$, $y$, and $z$, which would yield the same volume $V_{0}$, will inevitably result in a larger surface area.

