Opti S03A Final Exam Solutions Spring 2019

Problem 4) Let G(s) = ffooo g(x) exp(—i2msx) dx be the Fourier transform of g(x). The
inverse Fourier transform relation, namely, g(x) = fjooo G(s) exp(i2msx) ds, when differentiated
with respect to x, yields g'(x) = fjooo(iZHS)G(S) exp(i2msx) ds, which indicates that the
Fourier transform of g'(x) is (i2ms)G(s). Also, the Fourier transform of the right-hand side of
the differential equation can be obtained by direct integration, as follows:

F{rect(x) cos(2ms,x)} = f_l/f/z cos(2ms,x) exp(—i2msx) dx
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The Fourier transform of the differential equation may thus be written as follows:
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The last step is to find the inverse Fourier transform of G(s). Considering that each sine
function is a linear combination of two complex exponentials, we write

g(x) _ T_l{G(S)} _ j explin(s—sg)+i2msx] ds — j exp|—im(s—sg)+i2msx] ds
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The four integrals in Eq.(3) should be evaluated in the complex s-plane along the contours
shown in the figure below. The exponential factors appearing in the integrands are in the form of
expli2m(x + ¥%)s + ims,]. Depending on x being greater than or less than +%, the contours
must be closed in the upper-half or lower-half of the s-plane. Each integrand has a simple pole at
s = i/2m, and a second (also simple) pole at either s = s, or s = —s5,,.
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The first integral in Eq.(3) should be evaluated in the lower half of the complex s-plane
when x < —%, and in the upper half when x > —%;, as shown in the figure. The poles of the
integrand are located at s = s, and s = i/2m. Therefore,

—imexp(i2mspx) |

e - B x < —1/2,
explin(s—sg)+i2msx] ds = —-8m2[so—(i/2m)] @)
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The second integral is evaluated in the lower half-plane when x < %4, and in the upper half-
plane when x > %. The poles of the integrand are at s = s, and s = i/2m. Therefore,
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The third integral is evaluated in the lower half-plane when x < —%2, and in the upper half-

plane when x > —%. The poles of the integrand are at s = —s, and s = i/2m. Therefore,
- - . —im 2exp(—i.21'rsox) ; x < -1,
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w —8m2(s+sg)[s—(i/2m)] $= im exp(—i2msox) | i2mexpfin[(i/2m)+s0]-x} > —1
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The fourth integral is evaluated in the lower half-plane when x < %, and in the upper half-

plane when x > %. The poles of the integrand are at s = —s, and s = i/2m. Therefore,
—im exp(—i27msyx)
o _—. < Y
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Returning to Eq.(3), we now combine the integrals given in Egs.(4)-(7) to determine g(x)
over the entire x-axis (from —oo to o), as follows:

(0; x < =1,
i exp(—i2msyx) . imexp(i2msyx) exp(—x—Y—imsg) exp(—x—Y+imsy) | 1
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Further simplifications yield
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2(1+4m2s2) !



(0 x < =1,
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r 0; x < =1,

cos(2msyx) + 21sg sin(2msyx) — [cos(msy) — 27sq sin(msy)] exp(—x—1%)

g(x) =+ ; Xl <%, (9)

[cos(mrsg) + 2msg sin(wsg)]exp(—x+Y) — [cos(mwsy) — 21sg sin(7wsy)] exp(—x—1%)
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; x > Y.

As expected, the above solution is continuous at both extremes of the excitation function,
namely, at x = £%.




