Problem 4) Writing the separable solution as $\psi(\boldsymbol{r}, t)=f(r) g(\varphi) h(z) p(t)$, upon substitution into the wave equation and division by ψ, we find

$$
\begin{equation*}
v^{2}\left[\frac{f^{\prime \prime}(r)}{f(r)}+\frac{f^{\prime}(r)}{r f(r)}+\frac{g^{\prime \prime}(\varphi)}{r^{2} g(\varphi)}+\frac{h^{\prime \prime}(z)}{h(z)}\right]=\frac{p^{\prime \prime}(t)+\gamma p^{\prime}(t)}{p(t)} . \tag{1}
\end{equation*}
$$

Both sides of the above equation must now be equated to a negative constant $-c^{2}$, because otherwise one of the solutions for $p(t)$ will grow indefinitely with time, which is physically inadmissible. The left-hand side of Eq.(1) can be a constant only if its various terms that depend on r, φ, and z are separately equal to constants. We thus have

$$
\begin{align*}
& \frac{g^{\prime \prime}(\varphi)}{g(\varphi)}=-m^{2} \rightarrow g(\varphi)=A_{1} \cos (m \varphi)+A_{2} \sin (m \varphi) \rightarrow g(\varphi)=A \cos \left(m \varphi+\varphi_{0}\right) . \tag{2}\\
& \frac{h^{\prime \prime}(z)}{h(z)}=-k_{z}^{2} \rightarrow h(z)=B_{1} \sin \left(k_{z} z\right)+B_{2} \cos \left(k_{z} z\right) \quad \rightarrow \quad h(z)=B \sin (\ell \pi z / L) . \tag{3}\\
& \frac{f^{\prime \prime}(r)}{f(r)}+\frac{f^{\prime}(r)}{r f(r)}-\frac{m^{2}}{r^{2}}-k_{z}^{2}=-(c / v)^{2} \rightarrow \quad r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\left(k_{r}^{2} r^{2}-m^{2}\right) f(r)=0 . \tag{4}
\end{align*}
$$

In the above equations, we have introduced the integers m and ℓ as the mode indices in the azimuthal and vertical directions φ and z, respectively. We have also defined in Eq.(4) the new parameter $k_{r}=\sqrt{(c / v)^{2}-k_{z}^{2}}=\sqrt{(c / v)^{2}-(\ell \pi / L)^{2}}$. The solutions to the Bessel equation are

$$
\begin{equation*}
f(r)=C_{1} J_{m}\left(k_{r} r\right)+C_{2} Y_{m}\left(k_{r} r\right) \tag{5}
\end{equation*}
$$

Since the volume of interest contains the z-axis, for which $r=0$, the term containing a Bessel function of the second kind $Y_{m}(\cdot)$ must vanish, that is $C_{2}=0$. Given that $\psi(\boldsymbol{r}, t)=0$ at $r=R$, we must have $k_{r} R=\rho_{m n}$, where $\rho_{m n}$ is the $n^{\text {th }}$ zero of $J_{m}(\rho)$. Consequently,

$$
\begin{equation*}
\left(\frac{c}{v}\right)^{2}-\left(\frac{\ell \pi}{L}\right)^{2}=\left(\frac{\rho_{m n}}{R}\right)^{2} \quad \rightarrow \quad c^{2}=\left[\left(\frac{v \rho_{m n}}{R}\right)^{2}+\left(\frac{v \ell \pi}{L}\right)^{2}\right] . \tag{6}
\end{equation*}
$$

The time-dependent factor $p(t)$ is thus seen to be the solution of the following equation:

$$
\begin{equation*}
p^{\prime \prime}(t)+\gamma p^{\prime}(t)+c^{2} p(t)=0 \tag{7}
\end{equation*}
$$

The solutions of Eq.(7) are in the form of $\exp (\eta t)$, where $\eta^{2}+\gamma \eta+c^{2}=0$. consequently,

$$
\begin{equation*}
\eta_{ \pm}=-(\gamma / 2) \pm \sqrt{(\gamma / 2)^{2}-c^{2}} . \tag{8}
\end{equation*}
$$

Had we chosen the initial separation constant to be positive (i.e., c^{2} rather than $-c^{2}$), Eq.(8) would have yielded a positive value for η_{+}, which would have been physically untenable. With a negative separation constant, the two values of η will be either real and negative (over-damped), real, negative and equal (critically-damped), or complex conjugates with a negative real part (under-damped). The general solution of Eq.(7) thus acquires one of the following forms:

$$
p(t)=\left\{\begin{array}{lr}
D_{1} \exp \left(\eta_{+} t\right)+D_{2} \exp \left(\eta_{-} t\right) ; & \text { (overdamped) } \tag{9}\\
D_{1} \exp (-1 / 2 \gamma t)+D_{2} t \exp (-1 / 2 \gamma t) ; & \text { (critically }- \text { damped) } \\
D \exp (-1 / 2 \gamma t) \cos \left[\sqrt{\left(v \rho_{m n} / R\right)^{2}+(v \ell \pi / L)^{2}-(\gamma / 2)^{2}} t+\chi_{0}\right] ; & \text { (unerdamped) }
\end{array}\right.
$$

Thus the general solution in the underdamped case, for instance, is written as follows:

$$
\begin{array}{r}
\psi(\boldsymbol{r}, t)=\sum_{m} \sum_{n} \sum_{\ell} C_{m n \ell} J_{m}\left(\frac{\rho_{m n} r}{R}\right) \cos \left(m \varphi+\varphi_{m n \ell}\right) \sin (\ell \pi z / L) \\
\quad \times \exp (-1 / 2 \gamma t) \cos \left(\omega_{m n \ell} t+\chi_{m n \ell}\right) . \tag{10}
\end{array}
$$

The unknown parameters $C_{m n \ell}, \varphi_{m n \ell}$, and $\chi_{m n \ell}$ must be determined from the initial conditions at $t=0$.

