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Opti 503A Final Exam Solutions Spring 2014 
 
Problem 4) a) Choose a small volume element having dimensions (∆𝑟,∆𝜑,∆𝑧), centered at an 
arbitrary point (𝑟,𝜑, 𝑧) in the cylindrical coordinate system. The net heat diffusing into this 
volume element from adjacent regions will cause the temperature to rise in proportion to the 
specific heat, as follows: 

 𝜅 𝜕𝑇(𝑟+½∆𝑟,𝜑,𝑧,𝑡)
𝜕𝑟

(𝑟 + ½∆𝑟)∆𝜑∆𝑧 − 𝜅 𝜕𝑇(𝑟−½∆𝑟,𝜑,𝑧,𝑡)
𝜕𝑟

(𝑟 − ½∆𝑟)∆𝜑∆𝑧 

 +𝜅 𝜕𝑇(𝑟,𝜑+½∆𝜑,𝑧,𝑡)
𝑟𝜕𝜑

∆𝑟∆𝑧 − 𝜅 𝜕𝑇(𝑟,𝜑−½∆𝜑,𝑧,𝑡)
𝑟𝜕𝜑

∆𝑟∆𝑧 

 +𝜅 𝜕𝑇(𝑟,𝜑,𝑧+½∆𝑧,𝑡)
𝜕𝑧

𝑟∆𝑟∆𝜑 − 𝜅 𝜕𝑇(𝑟,𝜑,𝑧−½∆𝑧,𝑡)
𝜕𝑧

𝑟∆𝑟∆𝜑 = 𝐶 𝜕𝑇(𝑟,𝜑,𝑧,𝑡)
𝜕𝑡

𝑟∆𝑟∆𝜑∆𝑧. 

Dividing both sides of this equation by 𝐶𝑟∆𝑟∆𝜑∆𝑧, then allowing ∆𝑟 → 0, ∆𝜑 → 0 and  ∆𝑧 → 0, 
we find 

 (𝜅/𝐶) � 𝜕
𝑟𝜕𝑟

�𝑟 𝜕𝑇(𝑟,𝜑,𝑧,𝑡)
𝜕𝑟

� + 𝜕2𝑇(𝑟,𝜑,𝑧,𝑡)
𝑟2𝜕𝜑2

+ 𝜕2𝑇(𝑟,𝜑,𝑧,𝑡)
𝜕𝑧2

� = 𝜕𝑇(𝑟,𝜑,𝑧,𝑡)
𝜕𝑡

.  

The above diffusion equation may be further simplified, as follows: 

 𝐷 �𝜕
2𝑇(𝑟,𝜑,𝑧,𝑡)

𝜕𝑟2
+ 𝜕𝑇(𝑟,𝜑,𝑧,𝑡)

𝑟𝜕𝑟
+ 𝜕2𝑇(𝑟,𝜑,𝑧,𝑡)

𝑟2𝜕𝜑2
+ 𝜕2𝑇(𝑟,𝜑,𝑧,𝑡)

𝜕𝑧2
� = 𝜕𝑇(𝑟,𝜑,𝑧,𝑡)

𝜕𝑡
. 

b) Applying the method of separation of variables, we write 𝑇(𝑟,𝜑, 𝑧, 𝑡) = 𝑓(𝑟)𝑔(𝜑)ℎ(𝑧)𝑝(𝑡). 
Substitution into the diffusion equation yields 

 𝐷[𝑓″(𝑟)𝑔(𝜑)ℎ(𝑧)𝑝(𝑡) + 𝑟−1𝑓′(𝑟)𝑔(𝜑)ℎ(𝑧)𝑝(𝑡) + 𝑟−2𝑓(𝑟)𝑔″(𝜑)ℎ(𝑧)𝑝(𝑡) 

 +𝑓(𝑟)𝑔(𝜑)ℎ″(𝑧)𝑝(𝑡)] = 𝑓(𝑟)𝑔(𝜑)ℎ(𝑧)𝑝′(𝑡). 

Dividing the above equation by 𝑓(𝑟)𝑔(𝜑)ℎ(𝑧)𝑝(𝑡), we will have 

 𝐷 �𝑓
″(𝑟)
𝑓(𝑟)

+ 𝑓′(𝑟)
𝑟𝑓(𝑟)

+ 𝑔″(𝜑)
𝑟2𝑔(𝜑)

+ ℎ″(𝑧)
ℎ(𝑧)

� = 𝑝′(𝑡)
𝑝(𝑡)

. 

Now, functions of different variables appearing in the preceding equation must be equal to 
(different) constants—because there is no other way for the equation to be satisfied. Therefore, 

 𝑝′(𝑡) = −𝛼𝑝(𝑡)      →       𝑝(𝑡) = 𝐴1exp (−𝛼𝑡), 

 ℎ″(𝑧) = −𝛽2ℎ(𝑧)              →       ℎ(𝑧) = 𝐴2 sin(𝛽𝑧) + 𝐴3 cos(𝛽𝑧), 

 𝑔″(𝜑) = −𝑚2𝑔(𝜑)              →       𝑔(𝜑) = 𝐴4 sin(𝑚𝜑 + 𝜑0), 

 𝑓″(𝑟)
𝑓(𝑟)

+ 𝑓′(𝑟)
𝑟𝑓(𝑟)

− 𝑚2

𝑟2
− 𝛽2 = − 𝛼

𝐷
  →    𝑟2𝑓″(𝑟) + 𝑟𝑓′(𝑟) + {[(𝛼/𝐷) − 𝛽2]𝑟2 − 𝑚2}𝑓(𝑟) = 0. 

In these equations, 𝑚, a non-negative integer, is the azimuthal mode-number. If 𝑚 were not 
an integer, the temperature would have acquired multiple values at any given point (𝑟,𝜑, 𝑧, 𝑡), as 
adding multiples of 2𝜋 to 𝜑 would have resulted in different values of 𝑔(𝜑). 

The choice of a negative separation constant (−𝛽2) for ℎ(𝑧) is not necessary. Depending on 
the boundary conditions, this constant may be positive or negative. For a positive separation 
constant 𝛽2, the corresponding solution would be ℎ(𝑧) = 𝐴2 exp(𝛽𝑧) + 𝐴3exp (−𝛽𝑧). 
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to accumulated heat 

Separation constant must be negative to make g (ϕ) periodic; 
m must be integer to make the period a multiple of 2π. 

Separation constant must be negative, otherwise p(t) will 
grow exponentially as t→∞, which is non-physical. 

Bessel’s equation 



2 
 

c) The constant 𝛽 (and also the ratio 𝐴3/𝐴2) is determined by satisfying the boundary conditions 
at 𝑧 = 𝑧1 and 𝑧 = 𝑧2. The constant 𝛼 must then be chosen such that the solution to the Bessel 
equation would satisfy the boundary conditions at 𝑟 = 𝑅1 and 𝑟 = 𝑅2. The general solution of 
the Bessel equation has the form 𝑓(𝑟) = 𝐴5 𝐽𝑚��(𝛼/𝐷) ± 𝛽2 𝑟� + 𝐴6𝑌𝑚��(𝛼/𝐷) ± 𝛽2 𝑟�. If 
𝑅1  happens to be zero, however, the Bessel function of the second kind, 𝑌𝑚 , should not be 
included in the above solution, as 𝑌𝑚(𝑟) diverges to infinity at 𝑟 = 0. In general, the boundary 
conditions at 𝑟 = 𝑅1 and 𝑟 = 𝑅2 should be satisfied by a proper choice of 𝛼 and 𝐴6/𝐴5. 

The general solution of the diffusion equation should now be written as a superposition 
(with unknown coefficients) of the eigen-functions 𝑇(𝑟,𝜑, 𝑧, 𝑡) = 𝑓(𝑟)𝑔(𝜑)ℎ(𝑧)𝑝(𝑡)  thus 
obtained. The initial condition, i.e., 𝑇(𝑟,𝜑, 𝑧, 𝑡 = 0), may subsequently be used to determine the 
remaining unknown coefficients. 
 


