
  

Opti 503A Final Exam Solutions Spring 2013 
 
Problem 4) Since h(x) is defined over the interval [0, L], and since the desired Fourier cosine 
series is an even function of x whose period is 2L, we must first extend h(x) over the interval 
[−L, +L] in such a way as to create an even function ( ).h x



 This is done by defining ( ) (| | .)h x h x=


 
We then proceed to determine the ordinary Fourier series of the function ( ),h x



 as follows: 
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When ( )h x


 is turned into a periodic function with period 2L (using convolution with a comb 
function), its Fourier series coefficients become 
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Taking advantage of the fact that ,n nc c− =
 

 we may now write the Fourier series of ( )h x


 
over the interval [−L, +L] as follows: 
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Comparison with the Fourier cosine series expansion of h(x) over the interval [0, L] now yields 
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