Problem 4) Since $h(x)$ is defined over the interval [$0, L$], and since the desired Fourier cosine series is an even function of x whose period is $2 L$, we must first extend $h(x)$ over the interval $[-L,+L]$ in such a way as to create an even function $\underset{\sim}{h}(x)$. This is done by defining $\underset{\sim}{h}(x)=h(|x|)$. We then proceed to determine the ordinary Fourier series of the function $\underset{\sim}{h}(x)$, as follows:

$$
\begin{aligned}
\underset{\sim}{H}(s)=\mathscr{F}\{\underset{\sim}{h}(x)\} & =\int_{-L}^{L} \underset{\sim}{h}(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x=\int_{-L}^{0} h(-x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x+\int_{0}^{L} h(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x \\
& =\int_{0}^{L} h(x) \exp (+\mathrm{i} 2 \pi s x) \mathrm{d} x+\int_{0}^{L} h(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x=2 \int_{0}^{L} h(x) \cos (2 \pi s x) \mathrm{d} x .
\end{aligned}
$$

When $\underset{\sim}{h}(x)$ is turned into a periodic function with period $2 L$ (using convolution with a comb function), its Fourier series coefficients become

$$
\underset{\sim}{C_{n}}=\frac{1}{2 L} \underset{\sim}{H}\left(\frac{n}{2 L}\right)=\frac{1}{L} \int_{0}^{L} h(x) \cos (n \pi x / L) \mathrm{d} x .
$$

Taking advantage of the fact that $\underset{\sim}{\underset{\sim}{c}}{ }^{-}={\underset{\sim}{c}}_{n}$, we may now write the Fourier series of $\underset{\sim}{h}(x)$ over the interval $[-L,+L]$ as follows:

$$
\begin{aligned}
\underset{\sim}{h}(x) & =\sum_{n=-\infty}^{\infty} \underset{\sim}{c} \underset{n}{ } \exp [\mathrm{i} 2 \pi n x /(2 L)]={\underset{\sim}{c}}^{c_{0}}+\sum_{n=1}^{\infty}{\underset{\sim}{c}}^{\infty}[\exp (\mathrm{i} \pi n x / L)+\exp (-\mathrm{i} \pi n x / L)] \\
& ={\underset{\sim}{c}}_{0}+\sum_{n=1}^{\infty} 2{\underset{\sim}{n}} \cos (n \pi x / L)
\end{aligned}
$$

Comparison with the Fourier cosine series expansion of $h(x)$ over the interval [$0, L$] now yields

$$
\begin{gathered}
c_{0}={\underset{\sim}{c}}_{0}=\frac{1}{L} \int_{0}^{L} h(x) \mathrm{d} x, \\
c_{n}=2{\underset{\sim}{c}}_{n}=\frac{2}{L} \int_{0}^{L} h(x) \cos (n \pi x / L) \mathrm{d} x .
\end{gathered}
$$

