
  

Opti 503A Final Exam Solutions Spring 2012 
 
Problem 4) Separation of variables: Let ( , , ) .( ) ( ) ( )T r t f r g h tφ φ=  Substitution into the heat 
diffusion equation yields: 
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Dividing both sides of the above equation by ( ) ( ) ( ),f r g h tφ  we will have 
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Now, the right-hand-side of this equation is independent of r and φ, which must therefore be 
set equal to a constant. We choose the real, negative constant –c for ( )/ ( ),h t h t′  to ensure that the 
solution, ( ) exp ,( )h t ct= −  does not grow with time. Similarly, we choose the real, negative 
constant –α 2 for ( )/ ( ),g gφ φ′′  to ensure solutions of the form ( ) exp( i ,)g φ αφ= ±  which become 
periodic (with the required period of Δφ = 2π) when α  is an integer, say, α = m. Since the initial 
temperature above ambient at t = 0 is known to be in the form of f (r)cosφ , the only acceptable 
solution for g(φ) is cosφ  and, therefore, m =α = 1. The remaining part of the equation is now 
written as follows: 
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This is the Bessel equation of order 1, whose two independent solutions are 1( / )J c D r  and 

1( / ).Y c D r  Since Y1(⋅) diverges at the center of the disk, the only acceptable solution is going to 

be 1( / ).J c D r  Moreover, at the boundary r = R of the disk, the temperature is fixed at the 

ambient temperature To, which forces the solution 1( / )J c D r  to go to zero at this boundary. 

Denoting the n th zero of J1(ρ) by ρ1n, we will have 1/ ,nc D R ρ=  which yields 1
2 2/ .nc D Rρ=  

The complete solution of the heat diffusion equation for the present problem is thus given by 
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To find the unknown coefficients An, we resort to the initial condition at t = 0, which requires 
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=∑ in the interval 0 .r R≤ ≤  The coefficients An are readily obtained 

using the orthogonality of the Bessel functions 1 1( / )nJ r Rρ  for different values of n, that is, 
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