Problem 4) Separation of variables: Let $T(r, \phi, t)=f(r) g(\phi) h(t)$. Substitution into the heat diffusion equation yields:

$$
\begin{aligned}
& D \nabla^{2} T=D\left(\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \phi^{2}}\right)=\frac{\partial T}{\partial t} \\
& \rightarrow D\left[f^{\prime \prime}(r) g(\phi) h(t)+r^{-1} f^{\prime}(r) g(\phi) h(t)+r^{-2} f(r) g^{\prime \prime}(\phi) h(t)\right]=f(r) g(\phi) h^{\prime}(t)
\end{aligned}
$$

Dividing both sides of the above equation by $f(r) g(\phi) h(t)$, we will have

$$
D\left[\frac{f^{\prime \prime}(r)}{f(r)}+r^{-1} \frac{f^{\prime}(r)}{f(r)}+r^{-2} \frac{g^{\prime \prime}(\phi)}{g(\phi)}\right]=\frac{h^{\prime}(t)}{h(t)} .
$$

Now, the right-hand-side of this equation is independent of r and ϕ, which must therefore be set equal to a constant. We choose the real, negative constant $-c$ for $h^{\prime}(t) / h(t)$, to ensure that the solution, $h(t)=\exp (-c t)$, does not grow with time. Similarly, we choose the real, negative constant $-\alpha^{2}$ for $g^{\prime \prime}(\phi) / g(\phi)$, to ensure solutions of the form $g(\phi)=\exp (\pm \mathrm{i} \alpha \phi)$, which become periodic (with the required period of $\Delta \phi=2 \pi$) when α is an integer, say, $\alpha=m$. Since the initial temperature above ambient at $t=0$ is known to be in the form of $f(r) \cos \phi$, the only acceptable solution for $g(\phi)$ is $\cos \phi$ and, therefore, $m=\alpha=1$. The remaining part of the equation is now written as follows:

$$
D\left[\frac{f^{\prime \prime}(r)}{f(r)}+r^{-1} \frac{f^{\prime}(r)}{f(r)}-r^{-2}\right]=-c \rightarrow r^{2} f^{\prime \prime}(r)+r f^{\prime}(r)+\left[(c / D) r^{2}-1\right] f(r)=0
$$

This is the Bessel equation of order 1 , whose two independent solutions are $J_{1}(\sqrt{c / D} r)$ and $Y_{1}(\sqrt{c / D} r)$. Since $Y_{1}(\cdot)$ diverges at the center of the disk, the only acceptable solution is going to be $J_{1}(\sqrt{c / D} r)$. Moreover, at the boundary $r=R$ of the disk, the temperature is fixed at the ambient temperature T_{0}, which forces the solution $J_{1}(\sqrt{c / D} r)$ to go to zero at this boundary. Denoting the $n^{\text {th }}$ zero of $J_{1}(\rho)$ by $\rho_{1 n}$, we will have $\sqrt{c / D} R=\rho_{1 n}$, which yields $c=D \rho_{1 n}^{2} / R^{2}$. The complete solution of the heat diffusion equation for the present problem is thus given by

$$
T(r, \phi, t)=T_{0}+\sum_{n=1}^{\infty} A_{n} J_{1}\left(\rho_{1 n} r / R\right) \cos \phi \exp \left(-D \rho_{1 n}^{2} t / R^{2}\right)
$$

To find the unknown coefficients A_{n}, we resort to the initial condition at $t=0$, which requires that $f(r)=\sum_{n=1}^{\infty} A_{n} J_{1}\left(\rho_{1 n} r / R\right)$ in the interval $0 \leq r \leq R$. The coefficients A_{n} are readily obtained using the orthogonality of the Bessel functions $J_{1}\left(\rho_{1 n} r / R\right)$ for different values of n, that is,

$$
\begin{aligned}
& \int_{0}^{R} r f(r) J_{1}\left(\rho_{1 m} r / R\right) \mathrm{d} r=\sum_{n=1}^{\infty} A_{n} \int_{0}^{R} r J_{1}\left(\rho_{1 n} r / R\right) J_{1}\left(\rho_{1 m} r / R\right) \mathrm{d} r=A_{m} \int_{0}^{R} r J_{1}^{2}\left(\rho_{1 m} r / R\right) \mathrm{d} r \\
& \quad \rightarrow \quad A_{m}=\int_{0}^{R} r f(r) J_{1}\left(\rho_{1 m} r / R\right) \mathrm{d} r / \int_{0}^{R} r J_{1}^{2}\left(\rho_{1 m} r / R\right) \mathrm{d} r .
\end{aligned}
$$

