Problem 3) The smallest n for which the problem is meaningful is $n=2$. In this case the product of the lengths $x_{1} x_{2}=x_{1}\left(L-x_{1}\right)$ is readily maximized by setting the derivative with respect to x_{1} equal to zero. We will have

$$
\frac{\mathrm{d}}{\mathrm{~d} x_{1}}\left[x_{1}\left(L-x_{1}\right)\right]=L-2 x_{1}=0 \quad \rightarrow \quad x_{1}=L / 2 \quad \rightarrow \quad x_{2}=L-x_{1}=L / 2 .
$$

Assume that the product is known to be a maximum for some $n \geq 2$ when $x_{1}=x_{2}=\cdots=x_{n}=L / n$. What happens if we decide to divide the stick into $n+1$ pieces? Fix the length of the first piece at x_{1}. By assumption, the product $x_{1} x_{2} \cdots x_{n} x_{n+1}$ will then be a maximum if $x_{2}=x_{3}=\cdots=x_{n+1}=$ $\left(L-x_{1}\right) / n$. Therefore, we must choose x_{1} such that $x_{1} x_{2} \cdots x_{n} x_{n+1}=x_{1}\left[\left(L-x_{1}\right) / n\right]^{n}$ is a maximum. Differentiation with respect to x_{1} and setting the derivative equal to zero then yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x_{1}}\left[x_{1}\left(\frac{L-x_{1}}{n}\right)^{n}\right] & =\left(\frac{L-x_{1}}{n}\right)^{n}+x_{1} n(-1 / n)\left(\frac{L-x_{1}}{n}\right)^{n-1} \\
& =\left(\frac{L-x_{1}}{n}\right)^{n-1}\left[\frac{L-(1+n) x_{1}}{n}\right]=0 \rightarrow\left\{\begin{array}{l}
x_{1}=L ; \\
x_{1}=\frac{L}{n+1}
\end{array}\right.
\end{aligned}
$$

The first solution, $x_{1}=L$, is unacceptable as it leads to the product $x_{1} x_{2} \cdots x_{n} x_{n+1}=0$. The second solution, $x_{1}=L /(n+1)$, however, shows that the maximum product is obtained when all $n+1$ segments have equal lengths, i.e., $L /(n+1)$. The proof by induction is now complete.

