Problem 3) Drop a normal from B^{\prime} to $A B$, as shown. The line $B^{\prime} B^{\prime \prime}$ will then be parallel to $B C$, making the triangles $A B C$ and $A B^{\prime \prime} B^{\prime}$ similar. Since $A B^{\prime}$ is already known to be equal to $1 / 2 A C$, we conclude that $A B^{\prime \prime}$ is equal to $1 / 2 A B$. Therefore, $B^{\prime} B^{\prime \prime}$ is the perpendicular bisector of $A B$, which means that the point B^{\prime} is equidistant from A and B. Consequently, $B B^{\prime}=A B^{\prime}=1 / 2 A C$.

