Problem 3) The poles of the integrand in the complex z-plane are readily found to be

$$
\left(z^{2}-1\right)\left(z^{2}-2 \mathrm{i} z-2\right)=0 \quad \rightarrow \quad z_{1,2}= \pm 1 \quad \text { and } \quad z_{3,4}=\mathrm{i} \pm \sqrt{\mathrm{i}^{2}+2}= \pm 1+\mathrm{i}
$$

Both contours of integration depicted in Figs.(a) and (b) are acceptable, since, in each case, the integral over the large semi-circle goes to zero when $R \rightarrow \infty$.

In Fig.(a) the contour is closed in the lower-half of the z-plane. The closed contour does not contain any poles and, therefore, the integral around the closed loop is zero. This means that the desired integral equals the sum of the half-residues at $z=z_{1}$ and $z=z_{2}$. The residues at $z_{1,2}$ are

$$
\begin{aligned}
& \left.\frac{1}{(z+1)\left(z^{2}-2 \mathrm{i} z-2\right)}\right|_{z=z_{1}}=\frac{1}{2(1-2 \mathrm{i}-2)}=-\frac{1}{2(1+2 \mathrm{i})}=-\frac{1-2 \mathrm{i}}{2(1+4)}=-0.1+0.2 \mathrm{i}, \\
& \left.\frac{1}{(z-1)\left(z^{2}-2 \mathrm{i} z-2\right)}\right|_{z=z_{2}}=\frac{1}{-2(1+2 \mathrm{i}-2)}=\frac{1}{2(1-2 \mathrm{i})}=\frac{1+2 \mathrm{i}}{2(1+4)}=0.1+0.2 \mathrm{i} .
\end{aligned}
$$

The sum of the residues at z_{1} and z_{2} is thus seen to be 0.4 i . This must be multiplied by $-\mathrm{i} \pi$, where the minus sign accounts for the counterclockwise direction of rotation around the small semi-circles in Fig.(a). The desired integral is thus equal to 0.4π.

In Fig.(b) the closed contour contains the poles at z_{3} and z_{4}. The residues at these poles are

$$
\begin{aligned}
& \left.\frac{1}{\left(z^{2}-1\right)(z+1-\mathrm{i})}\right|_{z=z_{3}}=\frac{1}{\left[(1+\mathrm{i})^{2}-1\right][(1+\mathrm{i})+1-\mathrm{i}]}=\frac{1}{2(-1+2 \mathrm{i})}=-\frac{1+2 \mathrm{i}}{2(1+4)}=-0.1-0.2 \mathrm{i}, \\
& \left.\frac{1}{\left(z^{2}-1\right)(z-1-\mathrm{i})}\right|_{z=z_{4}}=\frac{1}{\left[(-1+\mathrm{i})^{2}-1\right][(-1+\mathrm{i})-1-\mathrm{i}]}=\frac{1}{2(1+2 \mathrm{i})}=\frac{1-2 \mathrm{i}}{2(1+4)}=0.1-0.2 \mathrm{i} .
\end{aligned}
$$

The sum of the residues at z_{3} and z_{4} is, therefore, -0.4 i , which, upon multiplying with $2 \pi \mathrm{i}$, yields 0.8π. To this we must now add the sum of the half-residues at z_{1} and z_{2}. This will be the same as the result obtained in the previous case except for a change of sign - because the direction of travel around the small semi-circles in Fig.(b) is clockwise. Therefore, the desired integral is given by $0.8 \pi-0.4 \pi=0.4 \pi$, as before.

