Problem 3)

$$
\begin{aligned}
& f(x)=x^{s} \sum_{k=0}^{\infty} A_{k} x^{k} \\
& f^{\prime}(x)=\sum_{k=0}^{\infty}(k+s) A_{k} x^{k+s-1} \\
& f^{\prime \prime}(x)=\sum_{k=0}^{\infty}(k+s)(k+s-1) A_{k} x^{k+s-2}
\end{aligned}
$$

Airy's equation: $f^{\prime \prime}(x)-x f(x)=\sum_{k=0}^{\infty}(k+s)(k+s-1) A_{k} x^{k+s-2}-\sum_{k=0}^{\infty} A_{k} x^{k+s+1}=0$.
Defining $k^{\prime}=k-3$, then switching the dummy of the summation back to k, we will have

$$
\begin{aligned}
& \sum_{k^{\prime}=-3}^{\infty}\left(k^{\prime}+s+3\right)\left(k^{\prime}+s+2\right) A_{k^{\prime}+3} x^{k^{\prime}+s+1}-\sum_{k=0}^{\infty} A_{k} x^{k+s+1} \\
&= s(s-1) A_{0} x^{s-2}+s(s+1) A_{1} x^{s-1}+(s+1)(s+2) A_{2} x^{s} \\
&+\sum_{k=0}^{\infty}\left[(k+s+3)(k+s+2) A_{k+3}-A_{k}\right] x^{k+s+1}=0 .
\end{aligned}
$$

Indicial equations: $\quad s(s-1) A_{0}=0 ; \quad s(s+1) A_{1}=0 ; \quad(s+1)(s+2) A_{2}=0$.
Solutions of the indicial equations:
i)

$$
s=1, \quad A_{0} \text { arbitrary }, \quad A_{1}=A_{2}=0
$$

ii) $\quad s=-2, \quad A_{2}$ arbitrary, $\quad A_{0}=A_{1}=0$.
iii) $\quad s=0, \quad A_{0}$ and A_{1} arbitrary, $A_{2}=0$.
iv) $\quad s=-1, \quad A_{1}$ and A_{2} arbitrary, $A_{0}=0$.

Recursion relation: $\quad A_{k+3}=\frac{A_{k}}{(k+s+2)(k+s+3)}$.
First solution of Airy's equation $(\boldsymbol{s}=\mathbf{1}): \quad A_{k+3}=\frac{A_{k}}{(k+3)(k+4)}, \quad k=0,3,6,9, \cdots$.

$$
A_{3}=\frac{A_{0}}{3 \cdot 4}=\frac{2}{4!} A_{0} ; \quad A_{6}=\frac{A_{3}}{6 \cdot 7}=\frac{A_{0}}{3 \cdot 4 \cdot 6 \cdot 7}=\frac{2 \cdot 5}{7!} A_{0} ; \quad A_{9}=\frac{A_{6}}{9 \cdot 10}=\frac{2 \cdot 5 \cdot 8}{10!} A_{0} ; \quad \ldots
$$

Therefore, $A_{3 n}=\frac{(3-1) \cdot(6-1) \cdot(9-1) \cdots(3 n-1)}{(3 n+1)!} A_{0}=\frac{3^{n}(1-1 / 3)(2-1 / 3)(3-1 / 3) \cdots(n-1 / 3)}{(3 n+1)!} A_{0}=\frac{3^{n}(n-1 / 3)!}{(3 n+1)!} A_{0}$.

$$
f_{1}(x)=x\left[1+\sum_{n=1}^{\infty} \frac{(n-1 / 3)!\left(3^{1 / 3} x\right)^{3 n}}{(3 n+1)!}\right] .
$$

Second solution of Airy's equation $(\boldsymbol{s}=\mathbf{- 2}): \quad A_{k+3}=\frac{A_{k}}{k(k+1)}, \quad k=2,5,8,11, \cdots$.

$$
A_{5}=\frac{A_{2}}{2 \cdot 3}=\frac{1}{3!} A_{2} ; \quad A_{8}=\frac{A_{5}}{5 \cdot 6}=\frac{A_{2}}{2 \cdot 3 \cdot 5 \cdot 5 \cdot 6}=\frac{1 \cdot 4}{6!} A_{2} ; \quad A_{11}=\frac{A_{8}}{8 \cdot 9}=\frac{1 \cdot 4 \cdot 7}{9!} A_{2} ;
$$

Therefore, $A_{3 n+2}=\frac{(3-2) \cdot(6-2) \cdot(9-2) \cdots(3 n-2)}{(3 n)!} A_{2}=\frac{3^{n}(1-2 / 3)(2-2 / 3)(3-2 / 3) \cdots(n-2 / 3)}{(3 n)!} A_{2}=\frac{3^{n}(n-2 / 3)!}{(3 n)!} A_{2}$.

$$
f_{2}(x)=1+\sum_{n=1}^{\infty} \frac{(n-2 / 3)!\left(3^{1 / 3} x\right)^{3 n}}{(3 n)!}
$$

The remaining solutions of the indicial equations (associated with $s=0$ and $s=-1$) do not yield any new solutions for the Airy equation. For example, in the case of $s=0$, we will have

$$
A_{k+3}=\frac{A_{k}}{(k+2)(k+3)}, \quad k=0,3,6,9, \cdots \quad \text { and also } k=1,4,7,10, \cdots
$$

The first series ($k=0,3,6,9, \cdots$) yields $f_{2}(x)$, while the second ($k=1,4,7,10, \cdots$) yields $f_{1}(x)$, so that the general solution will be $f(x)=A_{0} f_{2}(x)+A_{1} f_{1}(x)$. Similarly, in the case of $s=-1$, we will have

$$
A_{k+3}=\frac{A_{k}}{(k+1)(k+2)}, \quad k=1,4,7,10, \cdots \quad \text { and also } k=2,5,8,11, \cdots
$$

The first series ($k=1,4,7,10, \cdots$) yields $f_{2}(x)$, while the second ($k=2,5,8,11, \cdots$) yields $f_{1}(x)$, so that the general solution will be $f(x)=A_{1} f_{2}(x)+A_{2} f_{1}(x)$.

