Problem 3)

$$
f(x)=x^{s} \sum_{k=0}^{\infty} A_{k} x^{k} \quad \rightarrow \quad f^{\prime}(x)=\sum_{k=0}^{\infty}(k+s) A_{k} x^{k+s-1} \quad \rightarrow \quad f^{\prime \prime}(x)=\sum_{k=0}^{\infty}(k+s)(k+s-1) A_{k} x^{k+s-2}
$$

The differential equation may now be written

$$
\begin{aligned}
x^{2} f^{\prime \prime} & (x)+x f^{\prime}(x)-\left(x^{2}+p^{2}\right) f(x) \\
& =\sum_{k=0}^{\infty}(k+s)(k+s-1) A_{k} x^{k+s}+\sum_{k=0}^{\infty}(k+s) A_{k} x^{k+s}-\left(x^{2}+p^{2}\right) \sum_{k=0}^{\infty} A_{k} x^{k+s} \\
& =\sum_{k=0}^{\infty}\left[(k+s)^{2}-p^{2}\right] A_{k} x^{k+s}-\sum_{k=0}^{\infty} A_{k} x^{k+s+2} \\
& =\left(s^{2}-p^{2}\right) A_{0} x^{s}+\left[(s+1)^{2}-p^{2}\right] A_{1} x^{s+1}+\sum_{k=2}^{\infty}\left[(k+s)^{2}-p^{2}\right] A_{k} x^{k+s}-\sum_{k=2}^{\infty} A_{k-2} x^{k+s} \\
& =\left(s^{2}-p^{2}\right) A_{0} x^{s}+\left[(s+1)^{2}-p^{2}\right] A_{1} x^{s+1}+\sum_{k=2}^{\infty}\left[(k+s-p)(k+s+p) A_{k}-A_{k-2}\right] x^{k+s}=0 .
\end{aligned}
$$

Indicial equations:
i) $s^{2}-p^{2}=0 \rightarrow s_{1}=p, \quad s_{2}=-p, \quad A_{0}=$ arbitrary, $\quad A_{1}=0$.
ii) $(s+1)^{2}-p^{2}=0 \rightarrow s_{3}=p-1, \quad s_{4}=-p-1, \quad A_{0}=0, \quad A_{1}=$ arbitrary .

Recursion relation: $(k+s-p)(k+s+p) A_{k}-A_{k-2}=0 \quad \rightarrow \quad A_{k}=\frac{A_{k-2}}{(k+s-p)(k+s+p)}$.
Next we must determine the coefficients A_{k} for each of the four values of s.
a) $s_{1}=p: \quad A_{1}=A_{3}=A_{5}=\ldots=0 ; \quad A_{2}=\frac{A_{0}}{2(2+2 p)}=\frac{A_{0}}{2^{2}(p+1)}$;

$$
\begin{aligned}
& A_{4}= \frac{A_{2}}{4(4+2 p)}=\frac{A_{0}}{2^{4} \cdot 1 \cdot 2 \cdot(p+1)(p+2)} \\
& \begin{aligned}
A_{6}= & \frac{A_{4}}{6(6+2 p)}=\frac{A_{0}}{2^{6} \cdot 1 \cdot 2 \cdot 3 \cdot(p+1)(p+2)(p+3)} \\
& \vdots
\end{aligned} \\
& A_{2 k}=\frac{p!A_{0}}{2^{2 k} k!(p+k)!}
\end{aligned}
$$

Therefore, $f(x)=x^{p} \sum_{k=0}^{\infty} \frac{p!A_{0} x^{2 k}}{2^{2 k} k!(p+k)!} \quad \rightarrow \quad f(x)=2^{p} p!A_{0} \sum_{k=0}^{\infty} \frac{(x / 2)^{2 k+p}}{k!(p+k)!}$.
The coefficient $2^{p} p!A_{0}$, being a constant (i.e., independent of x and k), may be dropped. The remaining $f(x)$ is generally written as $I_{p}(x)$ and referred to as the modified Bessel function of the first kind, order p.
b) $\quad s_{2}=-p: \quad A_{1}=A_{3}=A_{5}=\ldots=0 ; \quad A_{2}=\frac{A_{0}}{2(2-2 p)}=\frac{A_{0}}{2^{2}(1-p)}$;

$$
\begin{aligned}
& A_{4}=\frac{A_{2}}{4(4-2 p)}=\frac{A_{0}}{2^{4} \cdot 1 \cdot 2 \cdot(1-p)(2-p)} \\
& A_{6}=\frac{A_{4}}{6(6-2 p)}=\frac{A_{0}}{2^{6} \cdot 1 \cdot 2 \cdot 3 \cdot(1-p)(2-p)(3-p)}
\end{aligned}
$$

$$
A_{2 k}=\frac{(-p)!A_{0}}{2^{2 k} k!(k-p)!} \cdot \longleftarrow \begin{aligned}
& \text { When } x \text { is not a positive integer, } x! \\
& \text { is defined in terms of the Gamma } \\
& \text { function, namely, } x!=\Gamma(x+1) .
\end{aligned}
$$

Therefore, $f(x)=x^{-p} \sum_{k=0}^{\infty} \frac{(-p)!A_{0} x^{2 k}}{2^{2 k} k!(k-p)!} \quad \rightarrow \quad f(x)=2^{-p}(-p)!A_{0} \sum_{k=0}^{\infty} \frac{(x / 2)^{2 k-p}}{k!(k-p)!}$.
The coefficient $2^{-p}(-p)!A_{0}$, being a constant (i.e., independent of x and k), may be dropped. The remaining $f(x)$ is written as $I_{-p}(x)$ and referred to as the modified Bessel function of the first kind, order $-p$. When p is non-integer, $I_{p}(x)$ and $I_{-p}(x)$ are the two independent solutions of the modified Bessel equation.

If p happens to be an integer, the solution obtained above for $s_{2}=-p$ must be re-examined, as $A_{2 k}$ goes to infinity for $k \geq p$. A careful examination of the recursion relation $A_{k-2}=k(k-2 p) A_{k}$ reveals that the first few coefficients $A_{0}, A_{2}, A_{4}, \ldots, A_{2(p-1)}$ must be zero in this case. (Start with $k=2 p$ and compute the coefficients $A_{k-2}, A_{k-4}, \ldots, A_{0}$ in declining order.) The remaining terms, however, follow the same pattern as the previous case of $s_{1}=p$, in which case, the solution associated with s_{2} becomes the same as that obtained for s_{1}, namely, $I_{p}(x)$. Thus, for integer p, the method of Frobenius yields only one of the two independent solutions of the modified Bessel equation. A more complex technique must be used to derive the second solution.
c, d) The solutions for $s_{3}=p-1$ and $s_{4}=-p-1$ turn out to be the same as those obtained for s_{1} and s_{2}, respectively. We will not go into the details, as the procedure is essentially the same as before.

