Opti 503A Final Exam Solutions Spring 2013

Problem 3)
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The differential equation may now be written

X2 (X)) +xF'(X) = (x> + p?) f(X)
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Indicial equations:
i) s2-p?’=0 — s =p, s,=—p, A =arbitrary, A =0.
i) (s+1)*-p*=0 — s,=p-1 s,=-p-1 A =0 A =arbitrary.

Recursion relation: (k+s—p)(k+s+p)A -A ,=0 —> A= (k+s— Sk(li+s+ 0)’
Next we must determine the coefficients Ay for each of the four values of s.
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Therefore, f Py DIAX f(x)=2°pray -
erefore, f(x)=x ZZZKkI(p+k)' - (x) = %Zk.(mk).

The coefficient 2Pp! Ay, being a constant (i.e., independent of x and k), may be dropped. The
remaining f (x) is generally written as 1,(x) and referred to as the modified Bessel function of the
first kind, order p.
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When x is not a positive integer, x!
A, = Zk(_ﬁ is defined in terms of the Gamma
2°°k!I(k — p)! function, namely, x!=T"(x+1).
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The coefficient 27°(—p)! Ao, being a constant (i.e., independent of x and k), may be dropped.
The remaining f(x) is written as 1_p(x) and referred to as the modified Bessel function of the first
kind, order —p. When p is non-integer, I,(x) and I_,(x) are the two independent solutions of the
modified Bessel equation.

If p happens to be an integer, the solution obtained above for s,=—p must be re-examined, as
Az goes to infinity for k>p. A careful examination of the recursion relation A _,=k(k—2p)A

reveals that the first few coefficients Ao, Az, Aas,..., Ayp-1) must be zero in this case. (Start with
k=2p and compute the coefficients Ak, Ac4,..., Ao in declining order.) The remaining terms,
however, follow the same pattern as the previous case of s;=p, in which case, the solution
associated with s, becomes the same as that obtained for s;, namely, 1,(x). Thus, for integer p, the
method of Frobenius yields only one of the two independent solutions of the modified Bessel
equation. A more complex technique must be used to derive the second solution.

¢, d) The solutions for s;=p—1 and s,=—p—1 turn out to be the same as those obtained for s; and
Sy, respectively. We will not go into the details, as the procedure is essentially the same as before.




