Problem 2)

a) The volume of a thin disk of radius $z \tan \theta$ and thickness $d z$ is $d V=\pi(z \tan \theta)^{2} d z$. Integrating from $z=0$ to $z=h$ yields

$$
\begin{equation*}
V(h, \theta)=\int_{0}^{h} \pi z^{2} \tan ^{2} \theta d z=\pi \tan ^{2} \theta \int_{0}^{h} z^{2} d z=1 / 3 \pi h^{3} \tan ^{2} \theta . \tag{1}
\end{equation*}
$$

b) The perimeter of the base is $2 \pi \rho=2 \pi h \tan \theta$, and the slanted height of the cone is $h / \cos \theta$. The surface area of the cone (i.e., the area of the flat sheet of paper out of which the cone is constructed) is thus given by

$$
S(h, \theta)=1 / 2(2 \pi h \tan \theta)(h / \cos \theta)=\frac{\pi h^{2} \sin \theta}{\cos ^{2} \theta} .
$$

c) To minimize $S(h, \theta)$ subject to the constraint $V(h, \theta)=V_{0}$, we form the function $S+\lambda V$, where λ is the Lagrange multiplier, as follows:

$$
\begin{equation*}
S(h, \theta)+\lambda V(h, \theta)=\frac{\pi h^{2} \sin \theta}{\cos ^{2} \theta}+1 / 3 \lambda \pi h^{3} \tan ^{2} \theta . \tag{3}
\end{equation*}
$$

Setting to zero the partial derivatives of the above function with respect to the independent variables h and θ now yields

$$
\begin{align*}
\frac{\partial}{\partial h}(S+\lambda V)=\frac{2 \pi h \sin \theta}{\cos ^{2} \theta}+\lambda \pi h^{2} \tan ^{2} \theta & =0 \quad \rightarrow \quad \lambda h \sin \theta+2=0 \tag{4}\\
\frac{\partial}{\partial \theta}(S+\lambda V)=\pi h^{2}\left(\frac{\cos ^{3} \theta+2 \cos \theta \sin ^{2} \theta}{\cos ^{4} \theta}\right) & +2 / 3 \lambda \pi h^{3} \tan \theta\left(1+\tan ^{2} \theta\right)=0 \\
& \rightarrow 1+\sin ^{2} \theta+2 / 3 \lambda h \sin \theta=0 \tag{5}
\end{align*}
$$

Solving Eqs.(4) and (5) for h and θ, we find

$$
\begin{array}{ll}
\sin \theta=\frac{1}{\sqrt{3}} & \left(\theta \cong 35.26^{\circ}\right) \\
h=-2 \sqrt{3} / \lambda
\end{array}
$$

Substituting h and θ into Eq.(1) in order to satisfy the constraint $V(h, \theta)=V_{0}$ now yields

$$
\begin{equation*}
V(h, \theta)=1 / 3 \pi h^{3} \tan ^{2} \theta=-\frac{4 \pi \sqrt{3}}{\lambda^{3}}=V_{0} \quad \rightarrow \quad \lambda=-\left(\frac{4 \pi \sqrt{3}}{V_{0}}\right)^{1 / 3} \rightarrow h=\sqrt[3]{6 V_{0} / \pi} \tag{7}
\end{equation*}
$$

Finally, the minimum surface area is obtained by placing the optimum values of h and θ found in Eqs.(6a) and (7) into Eq.(2), that is,

$$
\begin{equation*}
S(h, \theta)=\frac{\pi h^{2} \sin \theta}{\cos ^{2} \theta}=3\left(\sqrt{3} \pi V_{0}^{2} / 2\right)^{1 / 3} . \tag{8}
\end{equation*}
$$

