
Opti 503A Final Exam Solutions Spring 2021 
 

Problem 2) a) On the large circle, 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝜆𝜆 = 𝑅𝑅𝜆𝜆𝑒𝑒i𝜆𝜆𝜆𝜆, with 0 ≤ 𝜑𝜑 < 2𝜋𝜋. Similarly, on the 
small circle, 𝑓𝑓(𝑧𝑧) = 𝜀𝜀𝜆𝜆𝑒𝑒i𝜆𝜆𝜆𝜆, again with 0 ≤ 𝜑𝜑 < 2𝜋𝜋. On the straight-line-segment immediately 
above the real axis, 𝜑𝜑 = 0 and 𝑓𝑓(𝑧𝑧) = 𝑥𝑥𝜆𝜆, with 𝜀𝜀 ≤ 𝑥𝑥 ≤ 𝑅𝑅. And on the straight-line-segment 
immediately below the real axis, 𝜑𝜑 = 2𝜋𝜋 and 𝑓𝑓(𝑧𝑧) = 𝑥𝑥𝜆𝜆𝑒𝑒i2𝜋𝜋𝜆𝜆, again with 𝜀𝜀 ≤ 𝑥𝑥 ≤ 𝑅𝑅. 

b) ∮ 𝑧𝑧𝜆𝜆d𝑧𝑧
circle

= ∫ 𝑅𝑅𝜆𝜆𝑒𝑒i𝜆𝜆𝜆𝜆(i𝑅𝑅𝑒𝑒i𝜆𝜆)d𝜑𝜑2𝜋𝜋

𝜑𝜑=0
= i𝑅𝑅𝜆𝜆+1 � 𝑒𝑒i(𝜆𝜆+1)𝜆𝜆d𝜑𝜑

2𝜋𝜋

𝜑𝜑=0
 

 = �
2𝜋𝜋i,                                                               𝜆𝜆 = −1;

𝑅𝑅𝜆𝜆+1[𝑒𝑒i2𝜋𝜋(𝜆𝜆+1) − 1] (𝜆𝜆 + 1)⁄ ,               𝜆𝜆 ≠ −1.
 (1) 

The integral around the circle of radius 𝑅𝑅 is thus seen to be nonzero, unless 𝜆𝜆 is an integer 
(positive, zero, or negative) other than −1. Note in the above equation that 𝑒𝑒i2𝜋𝜋(𝜆𝜆+1) can be 
replaced by 𝑒𝑒i2𝜋𝜋𝜆𝜆, simply because 𝑒𝑒i2𝜋𝜋 = 1. 

c) The equation for the large circle obtained in part (b) can also be used for the small circle of 
radius 𝜀𝜀, provided that the sign of the integral is reversed (because the direction of travel along 
the small circle is opposite to that around the large circle). We thus have 

 ∮ 𝑧𝑧𝜆𝜆d𝑧𝑧
small circle

= �
−2𝜋𝜋i,                                                    𝜆𝜆 = −1;

𝜀𝜀𝜆𝜆+1(1 − 𝑒𝑒i2𝜋𝜋𝜆𝜆) (𝜆𝜆 + 1)⁄ ,               𝜆𝜆 ≠ −1.
 (2) 

If 𝜆𝜆 happens to be an integer (positive, zero, or negative) other than −1, no matter how 
small the value of 𝜀𝜀 may be, the integral around the small circle will be zero (because 𝑒𝑒i2𝜋𝜋𝜆𝜆 = 1). 
Also, for non-integer as well as complex values of 𝜆𝜆 having 𝜆𝜆′ > −1, the integral around the 
small circle tends toward zero as 𝜀𝜀 → 0; the reason is that 𝜀𝜀𝜆𝜆+1 = 𝜀𝜀𝜆𝜆′+1𝜀𝜀i𝜆𝜆″ and, so long as 
𝜆𝜆′ + 1 remains positive, 𝜀𝜀𝜆𝜆′+1 vanishes in the limit when 𝜀𝜀 → 0. This is remarkable, considering 
that for −1 < 𝜆𝜆′ < 0, the origin at 𝑧𝑧 = 0 is a singular point of 𝑓𝑓(𝑧𝑧). 

On the straight-line-segment immediately above the branch-cut, noting that 𝑧𝑧𝜆𝜆 = 𝑥𝑥𝜆𝜆, we 
evaluate the integral from 𝑥𝑥 = 𝜀𝜀 to 𝑥𝑥 = 𝑅𝑅 as follows:  

 ∫ 𝑥𝑥𝜆𝜆d𝑥𝑥𝑅𝑅
𝜀𝜀 = �

ln𝑅𝑅 − ln 𝜀𝜀 ,                                 𝜆𝜆 = −1;

(𝑅𝑅𝜆𝜆+1 − 𝜀𝜀𝜆𝜆+1) (𝜆𝜆 + 1)⁄ ,         𝜆𝜆 ≠ −1.
 (3) 

Similarly, on the straight-line-segment immediately below the branch-cut, where 𝑧𝑧𝜆𝜆 =
(𝑥𝑥𝑒𝑒i2𝜋𝜋)𝜆𝜆, we evaluate the integral from 𝑥𝑥 = 𝜀𝜀 to 𝑥𝑥 = 𝑅𝑅 as follows:  

 ∫ (𝑥𝑥𝑒𝑒i2𝜋𝜋)𝜆𝜆d𝑥𝑥𝑅𝑅
𝜀𝜀 = �

(ln𝑅𝑅 − ln 𝜀𝜀)𝑒𝑒−i2𝜋𝜋,                             𝜆𝜆 = −1;

(𝑅𝑅𝜆𝜆+1 − 𝜀𝜀𝜆𝜆+1)𝑒𝑒i2𝜋𝜋𝜆𝜆 (𝜆𝜆 + 1)⁄ ,         𝜆𝜆 ≠ −1.
 (4) 

Note that, for 𝜆𝜆 = −1, both integrals along the straight-line-segments diverge to infinity 
when 𝜀𝜀 → 0 (because ln 𝜀𝜀 → −∞). However, considering that these line-segments are traversed 
in opposite directions, their contributions to the overall loop integral cancel out. If 𝜆𝜆 happens to 
be an integer (positive, zero, or negative), then 𝑒𝑒i2𝜋𝜋𝜆𝜆 appearing in Eq.(4) will be equal to 1, in 
which case the contributions of the two line-segments in Eqs.(3) and (4) cancel out again. (When 
𝜆𝜆 is a negative integer, both integrals in Eqs.(3) and (4) diverge to infinity, but they cancel out 
nonetheless.) For non-integer 𝜆𝜆, given that 𝑒𝑒i2𝜋𝜋𝜆𝜆 ≠ 1, the two line-segments do not cancel out. 
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d𝑧𝑧 



d) When 𝜆𝜆 = −1, the contributions of the two straight-line-segments given in Eqs.(3) and (4) 
cancel out, since they are being traversed in opposite directions. The contribution of the small 
circle is −2𝜋𝜋i, which cancels out the contribution of the large circle; see Eqs.(1) and (2). The 
overall loop integral thus vanishes, as it should in accordance with the Cauchy-Goursat theorem. 

In the case of 𝜆𝜆 ≠ −1, adding the contribution of the small circle of radius 𝜀𝜀 to those of the 
straight lines immediately above and below the branch-cut yields 

 ∫ 𝑧𝑧𝜆𝜆d𝑧𝑧
3 segments

= (𝑅𝑅𝜆𝜆+1− 𝜀𝜀𝜆𝜆+1) + 𝜀𝜀𝜆𝜆+1(1 − 𝑒𝑒i2𝜋𝜋𝜆𝜆) − (𝑅𝑅𝜆𝜆+1− 𝜀𝜀𝜆𝜆+1)𝑒𝑒i2𝜋𝜋𝜆𝜆

𝜆𝜆+1
= 𝑅𝑅𝜆𝜆+1(1 − 𝑒𝑒i2𝜋𝜋𝜆𝜆)

𝜆𝜆+1
. (5) 

Thus, this integral cancels the one given by Eq.(1), confirming once again that the overall 
loop integral equals zero. 

Digression: One way to demonstrate that 𝑓𝑓(𝑧𝑧) = 𝑓𝑓(𝑟𝑟𝑒𝑒i𝜆𝜆) = 𝑟𝑟𝜆𝜆𝑒𝑒i𝜆𝜆𝜆𝜆 is analytic everywhere 
(except, of course, at the branch-point 𝑧𝑧 = 0 and on the branch-cut) is to compute the change 
∆𝑓𝑓(𝑧𝑧) in 𝑓𝑓(𝑧𝑧) when 𝑧𝑧 changes slightly from 𝑟𝑟𝑒𝑒i𝜆𝜆 by ∆𝑧𝑧 = (∆𝑟𝑟 + i𝑟𝑟∆𝜑𝜑)𝑒𝑒i𝜆𝜆. We will have 

 ∆𝑓𝑓(𝑧𝑧) = (𝜕𝜕𝑟𝑟𝑓𝑓)∆𝑟𝑟 + (𝜕𝜕𝜆𝜆𝑓𝑓)∆𝜑𝜑 = 𝜆𝜆𝑟𝑟𝜆𝜆−1𝑒𝑒i𝜆𝜆𝜆𝜆∆𝑟𝑟 + i𝜆𝜆𝑟𝑟𝜆𝜆𝑒𝑒i𝜆𝜆𝜆𝜆∆𝜑𝜑 = 𝜆𝜆𝑟𝑟𝜆𝜆−1𝑒𝑒i𝜆𝜆𝜆𝜆(∆𝑟𝑟 + i𝑟𝑟∆𝜑𝜑). (6) 

The local derivative of 𝑓𝑓(𝑧𝑧) is thus seen to be 

 𝑓𝑓′(𝑧𝑧) = 𝑙𝑙𝑙𝑙𝑙𝑙(∆𝑟𝑟,.∆𝜑𝜑)→0
∆𝑓𝑓(𝑧𝑧)
∆𝑧𝑧

= 𝜆𝜆𝑟𝑟𝜆𝜆−1𝑒𝑒i𝜆𝜆𝜑𝜑(∆𝑟𝑟+i𝑟𝑟∆𝜆𝜆)
(∆𝑟𝑟+i𝑟𝑟∆𝜆𝜆)𝑒𝑒i𝜑𝜑

= 𝜆𝜆𝑟𝑟𝜆𝜆−1𝑒𝑒i(𝜆𝜆−1)𝜆𝜆 = 𝜆𝜆𝑧𝑧𝜆𝜆−1. (7) 

The above derivative is clearly independent of the direction of ∆𝑧𝑧 in the complex 𝑧𝑧-plane. 
The derivative exists everywhere except at the branch-point (𝑧𝑧 = 0) and on the branch-cut, 
where the phase angle 𝜑𝜑 undergoes a 2𝜋𝜋 jump. 
 


