Problem 2) Substituting $f(x)=x^{s} \sum_{m=0}^{\infty} a_{m} x^{m}$ into the Laguerre equation, we find

$$
x \sum_{m=0}^{\infty} a_{m}(s+m)(s+m-1) x^{s+m-2}+(1+\alpha-x) \sum_{m=0}^{\infty} a_{m}(s+m) x^{s+m-1}+n \sum_{m=0}^{\infty} a_{m} x^{s+m}=0 .
$$

Upon separating the $m=0$ term from two of the infinite sums, the above equation becomes

$$
\begin{aligned}
a_{0} s(s-1) x^{s-1} & +\sum_{m=1}^{\infty} a_{m}(s+m)(s+m-1) x^{s+m-1}+(1+\alpha) a_{0} s x^{s-1} \\
& +(1+\alpha) \sum_{m=1}^{\infty} a_{m}(s+m) x^{s+m-1}-\sum_{m=0}^{\infty} a_{m}(s+m) x^{s+m}+n \sum_{m=0}^{\infty} a_{m} x^{s+m}=0 .
\end{aligned}
$$

The indicial equation, which is readily seen to be $a_{0} s(s-1) x^{s-1}+(1+\alpha) a_{0} s x^{s-1}=0$, simplifies to

$$
a_{0} s(s+\alpha)=0
$$

The first two infinite sums can be reorganized by introducing the new dummy $m^{\prime}=m-1$, then reverting m^{\prime} back to m. The four summations can then be combined to yield

$$
\begin{aligned}
\sum_{m=0}^{\infty} a_{m+1}(s+m+1)(s+m) x^{s+m}+(1+\alpha) & \sum_{m=0}^{\infty} a_{m+1}(s+m+1) x^{s+m} \\
& -\sum_{m=0}^{\infty} a_{m}(s+m-n) x^{s+m}=0
\end{aligned}
$$

Setting the coefficient of x^{s+m} to zero (for all m from 0 to ∞), we arrive at the following recursion relation:

$$
a_{m+1}(s+m+1)(s+m+1+\alpha)-a_{m}(s+m-n)=0 \quad \rightarrow \quad a_{m+1}=\frac{s+m-n}{(s+m+1)(s+m+1+\alpha)} a_{m} .
$$

The simplest solution of the indicial equation is $s=0$, which allows a_{0} to be chosen arbitrarily while the remaining coefficients are obtained from the recursion relation, as follows:

$$
a_{m+1}=\frac{m-n}{(m+1)(m+1+\alpha)} a_{m}
$$

This recursion relation indicates that the last nonzero coefficient will be a_{n}, since at $m=n$ the numerator vanishes, at which point a_{n+1} along with all subsequent coefficients a_{m} become zero. The first few coefficients now reveal the pattern for a general expression of a_{m}, namely,

$$
\begin{aligned}
& a_{1}=-\left(\frac{n}{1+\alpha}\right) a_{0} \rightarrow \quad a_{2}=\frac{n(n-1)}{2(1+\alpha)(2+\alpha)} a_{0} \quad \rightarrow \quad a_{3}=-\frac{n(n-1)(n-2)}{2 \cdot 3(1+\alpha)(2+\alpha)(3+\alpha)} a_{0} \rightarrow \quad \cdots \\
\rightarrow & a_{m}=(-1)^{m} \frac{n!\alpha!}{m!(n-m)!(m+\alpha)!} a_{0}=(-1)^{m} \frac{(n+\alpha)!}{m!(n-m)!(m+\alpha)!} \frac{n!\alpha!}{(n+\alpha)!} a_{0} . \leftarrow<\begin{array}{c}
\text { For non-integer } \alpha, \text { factorial is } \\
\text { interpreted in terms of Euler's } \\
\text { Gamma function. }
\end{array}
\end{aligned}
$$

Considering that n and α are constant parameters, the polynomial solution for $f(x)$ may be normalized by setting $a_{0}=\binom{n+\alpha}{n}$, in which case the Laguerre polynomial of order n and parameter α, denoted by $L_{n}^{\alpha}(x)$, is seen to be

$$
L_{n}^{\alpha}(x)=\sum_{m=0}^{n}(-1)^{m}\binom{n+\alpha}{n-m} \frac{x^{m}}{m!}
$$

Digression: The above solution runs into trouble when α is a negative integer, say, $\alpha=-v$. In this case, if $1 \leq v \leq n$, the recursion relation requires that a_{v-1} vanish and, applying the recursion in the reverse direction, one finds that $a_{0}, a_{1}, \cdots, a_{v-2}$ must vanish as well. The only
nonzero coefficients will then be $a_{v}, a_{v+1}, \cdots, a_{n}$. If $v \geq n+1$, the above solution for $L_{n}^{\alpha}(x)$ retains its validity and, in addition, a new series starts at $m=v$ with arbitrary a_{v} and continues all the way to infinity, yielding a second solution in the form of an infinite-order polynomial.

As for the second solution $s=-\alpha$ of the indicial equation, several possibilities exist:
i) If α happens to be a non-integer, then all the coefficients a_{m} obtained from the recursion relation will be nonzero and, of course, proportional to a_{0}; that is,

$$
a_{m+1}=\frac{m-n-\alpha}{(m+1)(m+1-\alpha)} a_{m} .
$$

The second solution of the Laguerre equation for $f(x)$ will then be $x^{-\alpha}$ times a polynomial of infinite-order.
ii) Case of $\alpha=0$. Here, the second solution of the indicial equation is also $s=0$, and

$$
a_{m+1}=\frac{m-n}{(m+1)^{2}} a_{m} .
$$

The coefficients a_{0} through a_{n} will be nonzero, and the resulting solution is the same as that obtained in the previous case of $s=0$.
iii) Case of $\alpha=v$, where $v>0$ is an integer. Here, $s=-v$ and

$$
a_{m+1}=\frac{m-n-v}{(m+1)(m+1-v)} a_{m} .
$$

In this case, when $m=v-1$, the a_{m} coefficient must be zero, and using the recursion relation in reverse, one finds that all the coefficients from a_{v-1} to a_{0} must vanish. Going forward, however, a_{v} is arbitrary and a_{v+1} to a_{v+n} will be found from the recursion relation. The resulting solution ends up being identical to that found in the case of $s=0$.
iv) Case of $\alpha=-v$, where v is a positive integer. Here, $s=v$ and the recursion relation yields

$$
a_{m+1}=\frac{m-n+v}{(m+1)(m+1+v)} a_{m} .
$$

If $1 \leq v \leq n$, the coefficients after a_{n-v} will vanish, leaving $a_{0}, a_{1}, \cdots, a_{n-v}$ as the only nonzero coefficients. In contrast, if $v \geq n+1$, all the a_{m} will be nonzero, yielding an infiniteorder polynomial solution for the Laguerre equation. Both of these solutions are identical to those obtained previously when $s=0$ was picked as a solution of the indicial equation.

