Problem 2) a) $F(s)=\int_{-\infty}^{\infty} f(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x=\int_{1}^{3} \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x$

$$
\begin{aligned}
& =\exp (-\mathrm{i} 2 \pi s x) /\left.(-\mathrm{i} 2 \pi s)\right|_{x=1} ^{3} \\
& =[\exp (-\mathrm{i} 6 \pi s)-\exp (-\mathrm{i} 2 \pi s)] /(-\mathrm{i} 2 \pi s) \\
& =\exp (-\mathrm{i} 4 \pi s)[\exp (-\mathrm{i} 2 \pi s)-\exp (+\mathrm{i} 2 \pi s)] /(-\mathrm{i} 2 \pi s) \\
& =\exp (-\mathrm{i} 4 \pi s) \sin (2 \pi s) /(\pi s)=2 \exp (-\mathrm{i} 4 \pi s) \operatorname{sinc}(2 s)
\end{aligned}
$$

b) $f(x)=\operatorname{rect}[(x-2) / 2]$. Here, the standard $\operatorname{rect}(\cdot)$ function is shifted to the right by 2 units. Also, the division of the argument of the function by 2 doubles the width of the function. Overall, this is a rectangular function that equals 1.0 when x falls within the range 2 ± 1 (i.e., $1 \leq x \leq 3$), and is zero outside that range.
c) The shift theorem of Fourier transform asserts that $\mathcal{F}\left\{g\left(x-x_{0}\right)\right\}=\exp \left(-\mathrm{i} 2 \pi x_{0} s\right) G(s)$, where $G(s)=\mathcal{F}\{g(x)\}$. Here, $x_{0}=2$ introduces the multiplicative phase-factor $\exp (-\mathrm{i} 4 \pi s)$. The scaling theorem of Fourier transform asserts that $\mathcal{F}\{g(x / \alpha)\}=|\alpha| G(\alpha s)$. Here, $\alpha=2$ changes the Fourier transform $\operatorname{sinc}(s)$ of $\operatorname{rect}(x)$ to $2 \operatorname{sinc}(2 s)$ for the scaled version of the function, namely, $\operatorname{rect}(x / 2)$. Thus,

$$
F(s)=\mathcal{F}\{\operatorname{rect}[(x-2) / 2]\}=\exp (-\mathrm{i} 4 \pi s) \mathcal{F}\{\operatorname{rect}(x / 2)\}=\exp (-\mathrm{i} 4 \pi s)[2 \operatorname{sinc}(2 s)] .
$$

The results obtained for $F(s)$ in parts (a) and (c) are clearly identical.

