Problem 2) a)
$$F(s) = \int_{-\infty}^{\infty} f(x) \exp(-i2\pi sx) dx = \int_{1}^{3} \exp(-i2\pi sx) dx$$

 $= \exp(-i2\pi sx)/(-i2\pi s)|_{x=1}^{3}$
 $= [\exp(-i6\pi s) - \exp(-i2\pi s)]/(-i2\pi s)$
 $= \exp(-i4\pi s) [\exp(-i2\pi s) - \exp(+i2\pi s)]/(-i2\pi s)$
 $= \exp(-i4\pi s) \sin(2\pi s)/(\pi s) = 2 \exp(-i4\pi s) \operatorname{sinc}(2s).$

b) f(x) = rect[(x-2)/2]. Here, the standard $\text{rect}(\cdot)$ function is shifted to the right by 2 units. Also, the division of the argument of the function by 2 doubles the width of the function. Overall, this is a rectangular function that equals 1.0 when x falls within the range 2 ± 1 (i.e., $1 \le x \le 3$), and is zero outside that range.

c) The shift theorem of Fourier transform asserts that $\mathcal{F}\{g(x-x_0)\} = \exp(-i2\pi x_0 s) G(s)$, where $G(s) = \mathcal{F}\{g(x)\}$. Here, $x_0 = 2$ introduces the multiplicative phase-factor $\exp(-i4\pi s)$. The scaling theorem of Fourier transform asserts that $\mathcal{F}\{g(x/\alpha)\} = |\alpha|G(\alpha s)$. Here, $\alpha = 2$ changes the Fourier transform $\operatorname{sinc}(s)$ of $\operatorname{rect}(x)$ to $2\operatorname{sinc}(2s)$ for the scaled version of the function, namely, $\operatorname{rect}(x/2)$. Thus,

$$F(s) = \mathcal{F}\left\{\operatorname{rect}\left[\frac{x-2}{2}\right]\right\} = \exp\left(-i4\pi s\right) \mathcal{F}\left[\operatorname{rect}\left(\frac{x}{2}\right)\right] = \exp\left(-i4\pi s\right) \left[2\operatorname{sinc}\left(2s\right)\right].$$

The results obtained for F(s) in parts (a) and (c) are clearly identical.