Problem 2) a) Let the Fourier transform of $f(x)$ be $F(s)=\int_{-\infty}^{\infty} f(x) \exp (-\mathrm{i} 2 \pi s x) \mathrm{d} x$. Then $f(x)=\int_{-\infty}^{\infty} F(s) \exp (\mathrm{i} 2 \pi s x) \mathrm{d} s$, and $\mathcal{F}\left\{f^{\prime}(x)\right\}=\mathrm{i} 2 \pi s F(s)$. The Fourier transform of the differential equation may thus be written as

$$
\begin{equation*}
\mathrm{i} 2 \pi s F(s)+\eta F(s)=\operatorname{Sinc}(s) \quad \rightarrow \quad F(s)=\frac{\sin (\pi s)}{\pi s(\mathrm{i} 2 \pi s+\eta)} \tag{1}
\end{equation*}
$$

The solution of the differential equation may now be obtained by inverse Fourier transforming the above $F(s)$, as follows:

$$
\begin{align*}
f(x)=\mathcal{F}^{-1}\{F(s)\} & =\int_{-\infty}^{\infty} \frac{\sin (\pi s)}{\pi s(\mathrm{i} 2 \pi s+\eta)} \exp (\mathrm{i} 2 \pi s x) \mathrm{d} s \\
& =-\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \frac{\exp (\mathrm{i} \pi s)-\exp (-\mathrm{i} \pi s)}{s[s-\mathrm{i}(\eta / 2 \pi)]} \exp (\mathrm{i} 2 \pi s x) \mathrm{d} s \\
& =-\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \frac{\exp [\mathrm{i} 2 \pi(x+1 / 2) s]}{s[s-\mathrm{i}(\eta / 2 \pi)]} \mathrm{d} s+\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \frac{\exp [\mathrm{i} 2 \pi(x-1 / 2) s]}{s[s-\mathrm{i}(\eta / 2 \pi)]} \mathrm{d} s . \tag{2}
\end{align*}
$$

The integrands on the right-hand-side of Eq.(2) have two poles, one at $z_{0}=0$, the other at $z_{1}=\mathrm{i} \eta / 2 \pi$, as shown in the figures below. Depending on the value of x, the integration contour may be in the upper- or lower-half of the complex plane. The contribution of the large semicircle to the loop integral vanishes when its radius R goes to infinity (Jordan's lemma). As for the pole at z_{0}, only one-half of its residue must be taken into account because this pole is located directly on the x-axis.

Both integrals must be evaluated in the lower-half of the complex plane when $x<-1 / 2$. Thus

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\exp [\mathrm{i} 2 \pi(x \pm 1 / 2) s]}{s[s-\mathrm{i}(\eta / 2 \pi)]} \mathrm{d} s=-\mathrm{i} \pi \frac{\exp \left[\mathrm{i} 2 \pi(x \pm 1 / 2) z_{0}\right]}{z_{0}-\mathrm{i}(\eta / 2 \pi)}=\frac{2 \pi^{2}}{\eta} . \tag{3}
\end{equation*}
$$

The same result continues to apply to the second integral for $x<1 / 2$ as well. If $x>-1 / 2$, the first integral must be evaluated in the upper-half plane, as follows:

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{\exp [\mathrm{i} 2 \pi(x+1 / 2) s]}{s[s-\mathrm{i}(\eta / 2 \pi)]} \mathrm{d} s & =\mathrm{i} 2 \pi \frac{\exp \left[\mathrm{i} 2 \pi(x+1 / 2) z_{1}\right]}{z_{1}}+\mathrm{i} \pi \frac{\exp \left[\mathrm{i} 2 \pi(x+1 / 2) z_{0}\right]}{z_{0}-\mathrm{i}(\eta / 2 \pi)} \\
& =\left(4 \pi^{2} / \eta\right)\{\exp [-\eta(x+1 / 2)]-1 / 2\} . \tag{4}
\end{align*}
$$

Finally, if $x>1 / 2$, the second integral must also be evaluated in the upper-half-plane, that is,

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{\exp [\mathrm{i} 2 \pi(x-1 / 2) s]}{s[s-\mathrm{i}(\eta / 2 \pi)]} \mathrm{d} s & =\mathrm{i} 2 \pi \frac{\exp \left[\mathrm{i} 2 \pi(x-1 / 2) z_{1}\right]}{z_{1}}+\mathrm{i} \pi \frac{\exp \left[\mathrm{i} 2 \pi(x-1 / 2) z_{0}\right]}{z_{0}-\mathrm{i}(\eta / 2 \pi)} \\
& =\left(4 \pi^{2} / \eta\right)\{\exp [-\eta(x-1 / 2)]-1 / 2\} . \tag{5}
\end{align*}
$$

The complete solution is now obtained from Eq.(2) upon substitution from Eqs.(3)-(5), as follows:

$$
f(x)=\left\{\begin{array}{lr}
0 ; & x<-1 / 2 \tag{6}\\
\{1-\exp [-\eta(x+1 / 2)]\} / \eta ; & -1 / 2<x<1 / 2 \\
{[\exp (\eta / 2)-\exp (-\eta / 2)] \exp (-\eta x) / \eta ;} & x>1 / 2
\end{array}\right.
$$

b) The function $f(x)$ is continuous at $x=-1 / 2$, where $f\left(x^{-}\right)=f\left(x^{+}\right)=0$, and also at $x=1 / 2$, where $f\left(x^{-}\right)=f\left(x^{+}\right)=[1-\exp (-\eta)] / \eta$. Any discontinuity in $f(x)$ would have been unacceptable, because the original differential equation contains $f^{\prime}(x)$ on the left-hand side, but no corresponding delta-functions on the right-hand side. Note also that $f(x)$ approaches zero as $x \rightarrow \infty$, all of which in keeping with one's expectations from the solution of the differential equation.
c) A plot of $f(x)$ is shown below.

