Problem 1)

a) $D = 4N\sqrt{(p/4)^2 + A^2} = \sqrt{(Np)^2 + (4NA)^2} = \sqrt{L^2 + (4NA)^2} = L\sqrt{1 + (4NA/L)^2}.$

b) With N kept constant, when $A \rightarrow 0$, the above formula indicates that $D \rightarrow L$.

c) With *NA* kept constant, when $A \to 0$ while $N \to \infty$, the distance *D* remains constant, as given by the expression obtained in part (a). The value of *D* is thus seen to be independent of the specific choices of *A* and *N*; it is only a function of *L* and of the product *NA*, and it is always greater than *L*. If *NA* happens to be much greater than *L*, then $D \cong 4NA \gg L$, despite the fact that the drunkard keeps very close to the straight line and always moves forward.