Problem 6) First consider the range of x where $x \geq 1$. Since $f(x)=x^{x}=\exp (x \ln x)$ is a monotonically increasing function of x when $x \geq 1$, it is easy to plot $f(x)$ by putting in a few values for x, say, $f(1)=1, f(2)=2^{2}=4, f(3)=3^{3}=27$, and so on. For values of x between 0 and 1, we must find the derivative of $f(x)$ and see if there exist points at which the function may have a minimum or a maximum. We will have

$$
f^{\prime}(x)=(1+\ln x) \exp (x \ln x)=(1+\ln x) x^{x}=0 \rightarrow \ln x=-1 \rightarrow x=1 / e \cong 0.368
$$

The value of the function at $x=1 / e$ is readily found to be $f(1 / e)=e^{-(1 / e)}=0.692$. So, when x drops below 1.0, the function declines until $x=1 / e$, at which point it reaches its minimum, then begins to climb again as x falls below $1 / e$ on its way to zero. Now, as x approaches zero from above, the limit of $x \ln x$ is 0 , as can be verified by plugging in some small values for x, say, $x=0.1,0.01,0.001$, which yield $x \ln x=-0.23,-0.046,-0.0069$. Consequently, $\lim _{x \rightarrow 0} x^{x}=1$. Note that the slope of $f(x)$ approaches $-\infty$ as x goes to zero. On the negative half of the x-axis, where $\ln x=\ln |x|+\mathrm{i} \pi$, we have

$$
x^{x}=\exp [x(\ln |x|+\mathrm{i} \pi)]=\exp (-|x| \ln |x|) \exp (\mathrm{i} \pi x) ; \quad(x<0)
$$

Therefore, the magnitude of x^{x} on the negative x-axis is seen to be the inverse of x^{x} on the positive half of the axis. In particular, the maximum of $\left|x^{x}\right|$ occurs at $x=-1 / e$, where $\left|x^{x}\right|=e^{1 / e}=1.445$.

Shown above is a plot of $\left|x^{x}\right|$ over the entire x-axis. In addition, on the negative x-axis, the function is complex-valued, having a phase πx, which declines linearly as x goes from zero to $-\infty$. Note that, when $x=-1,-3,-5, \cdots$, the value of the phase-factor is $\exp (\mathrm{i} \pi x)=-1$, whereas for $x=-2,-4,-6, \cdots$, we have $\exp (\mathrm{i} \pi x)=1$.

