Problem 5) There exist a couple of different ways of solving this problem. Here is a somewhat different method than the one suggested in the statement of the problem.

Step 1: Pick the point C^{\prime} on $A B$ such that $\overline{A C^{\prime}}=\overline{A C}$.
Step 2: Draw a straight line from D to C^{\prime}. The equality of
 triangles $A C D$ and $A C^{\prime} D$ implies that $\overline{C^{\prime} D}=\overline{C D}$ and $\widehat{A D C}=\widehat{A D C^{\prime}}$.
Step 3: Draw the straight line $C^{\prime} D^{\prime}$ parallel to $B D$ and observe that $\widehat{C^{\prime D^{\prime} D}}=\widehat{A D C}$. Therefore, the triangle $D C^{\prime} D^{\prime}$ is isoceles, meaning that $\overline{C^{\prime} D}=\overline{C^{\prime} D^{\prime}}$.
Step 4: The similar triangles $A C^{\prime} D^{\prime}$ and $A B D$ now yield $\overline{A C^{\prime}}: \overline{A B}=\overline{C^{\prime} D^{\prime}}: \overline{B D}$.
Considering that $\overline{A C^{\prime}}=\overline{A C}$ and $\overline{C^{\prime} D^{\prime}}=\overline{C^{\prime} D}=\overline{C D}$, we will have $\overline{A C}: \overline{A B}=\overline{C D}: \overline{B D}$, thus completing the proof.

