Problem 5) There exist a couple of different ways of solving this problem. Here is a somewhat different method than the one suggested in the statement of the problem.

Step 1: Pick the point C' on AB such that $\overline{AC'} = \overline{AC}$.

Step 2: Draw a straight line from *D* to *C'*. The equality of triangles *ACD* and *AC'D* implies that $\overline{C'D} = \overline{CD}$ and $\widehat{ADC} = \widehat{ADC'}$.

Step 3: Draw the straight line C'D' parallel to BD and observe that $\widehat{C'D'D} = \widehat{ADC}$. Therefore, the triangle DC'D' is isoceles, meaning that $\overline{C'D} = \overline{C'D'}$.

Step 4: The similar triangles AC'D' and ABD now yield $\overline{AC'}: \overline{AB} = \overline{C'D'}: \overline{BD}$.

Considering that $\overline{AC'} = \overline{AC}$ and $\overline{C'D'} = \overline{CD} = \overline{CD}$, we will have $\overline{AC} : \overline{AB} = \overline{CD} : \overline{BD}$, thus completing the proof.