Problem 4) Let the area of the rectangle be denoted by $f(x, y)=x y$, while its perimeter is given by $g(x, y)=2(x+y)=P$. Setting the partial derivatives with respect to x and y of the composite function $f+\lambda g$ equal to zero, we find

$$
\begin{aligned}
& \partial_{x}(f+\lambda g)=y+2 \lambda=0 \quad \\
& \partial_{y}(f+\lambda g)=x+2 \lambda=0 \quad
\end{aligned} \quad \begin{gathered}
y=-2 \lambda, \\
\end{gathered}
$$

Consequently, $g(x, y)=2(-2 \lambda-2 \lambda)=-8 \lambda=P$, yielding $\lambda=-P / 8$. From here we find $x=y=-2 \lambda=P / 4$. The rectangle having the maximum area is thus a square, with each side being equal to $P / 4$.

