Opti S03A Midterm Solutions Spring 2020

Problem 4) a) The ellipse equation, (x/a)? + (y/b)? = u, shows that u is non-negative. At the
origin, where x = y = 0, we have u = 0; everywhere else, however, u must be positive.

The hyperbola equation, (x/c)? — (y/d)? = v, shows that at the origin, where x =y = 0,
we must have v = 0. However, v is also zero on the straight lines y = +(d/c)x.

When v > 0, we have |y| < (d/c)|x|, so that the contours of constant v lie within the
region between the two straight lines y = +(d/c)x that contains the x-axis.

In contrast, when v < 0, we have |y| > (d/c)|x|, so that the contours of constant v lie
within the region between the two straight lines y = +(d/c)x that contains the y-axis.

The figure below shows how the first quadrant of the xy-plane maps onto the right half of
the uv-plane. The three remaining quadrants of the xy-plane similarly map onto the same region
of the uv-plane. Note that the left half of the uv-plane is not needed at all.

To find the inverse mapping from the uv-plane back onto the xy-plane, we solve the ellipse
and hyperbola equations simultaneously for x and y as functions of u and v, as follows:
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It is obvious that x? and y? must be non-negative for all values of u > 0 and v. This
requires that —(b/d)?u < v < (a/c)?u. In the figure below, the similarly shaded regions depict
mappings from different zones within the first quadrant of the xy-plane onto the corresponding
zones of the uv-plane.
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b) Being interested here only in the first quadrant of the xy-plane, upon taking the square root of
Egs.(1) and (2), we pick the positive solutions for both x(u, v) and y(u, v), as follows:
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Partial differentiation now yields
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Subsequently, the Jacobian is found to be
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Digression: An alternative method of computing the Jacobian is to evaluate d(u,v)/d(x,y) at
first, then invert the result, as follows:
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Clearly, the Jacobian in Eq.(6) for transforming from xy to the uv coordinates is the inverse
of that in Eq.(7) for transforming from the uv back into the xy coordinate system.
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