Problem 4) a) The ellipse equation, $(x / a)^{2}+(y / b)^{2}=u$, shows that u is non-negative. At the origin, where $x=y=0$, we have $u=0$; everywhere else, however, u must be positive.

The hyperbola equation, $(x / c)^{2}-(y / d)^{2}=v$, shows that at the origin, where $x=y=0$, we must have $v=0$. However, v is also zero on the straight lines $y= \pm(d / c) x$.

When $v>0$, we have $|y|<(d / c)|x|$, so that the contours of constant v lie within the region between the two straight lines $y= \pm(d / c) x$ that contains the x-axis.

In contrast, when $v<0$, we have $|y|>(d / c)|x|$, so that the contours of constant v lie within the region between the two straight lines $y= \pm(d / c) x$ that contains the y-axis.

The figure below shows how the first quadrant of the $x y$-plane maps onto the right half of the $u v$-plane. The three remaining quadrants of the $x y$-plane similarly map onto the same region of the $u v$-plane. Note that the left half of the $u v$-plane is not needed at all.

To find the inverse mapping from the $u v$-plane back onto the $x y$-plane, we solve the ellipse and hyperbola equations simultaneously for x and y as functions of u and v, as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
(b / a)^{2} x^{2}+y^{2}=b^{2} u \\
(d / c)^{2} x^{2}-y^{2}=d^{2} v
\end{array} \quad \rightarrow \quad x^{2}=\frac{b^{2} u+d^{2} v}{(b / a)^{2}+(d / c)^{2}}=\frac{(a c)^{2}\left(b^{2} u+d^{2} v\right)}{(a d)^{2}+(b c)^{2}} .\right. \tag{1}\\
& \left\{\begin{array}{l}
x^{2}+(a / b)^{2} y^{2}=a^{2} u \\
x^{2}-(c / d)^{2} y^{2}=c^{2} v
\end{array} \rightarrow y^{2}=\frac{a^{2} u-c^{2} v}{(a / b)^{2}+(c / d)^{2}}=\frac{(b d)^{2}\left(a^{2} u-c^{2} v\right)}{(a d)^{2}+(b c)^{2}} .\right. \tag{2}
\end{align*}
$$

It is obvious that x^{2} and y^{2} must be non-negative for all values of $u \geq 0$ and v. This requires that $-(b / d)^{2} u \leq v \leq(a / c)^{2} u$. In the figure below, the similarly shaded regions depict mappings from different zones within the first quadrant of the $x y$-plane onto the corresponding zones of the $u v$-plane.

b) Being interested here only in the first quadrant of the $x y$-plane, upon taking the square root of Eqs.(1) and (2), we pick the positive solutions for both $x(u, v)$ and $y(u, v)$, as follows:

$$
\begin{equation*}
x(u, v)=\frac{a c \sqrt{b^{2} u+d^{2} v}}{\sqrt{(a d)^{2}+(b c)^{2}}}, \quad y(u, v)=\frac{b d \sqrt{a^{2} u-c^{2} v}}{\sqrt{(a d)^{2}+(b c)^{2}}} . \tag{3}
\end{equation*}
$$

Partial differentiation now yields

$$
\begin{array}{ll}
\frac{\partial x}{\partial u}=\frac{a c}{\sqrt{(a d)^{2}+(b c)^{2}}} \times \frac{b^{2}}{2 \sqrt{b^{2} u+d^{2} v}}, & \frac{\partial y}{\partial u}=\frac{b d}{\sqrt{(a d)^{2}+(b c)^{2}}} \times \frac{a^{2}}{2 \sqrt{a^{2} u-c^{2} v}}, \\
\frac{\partial x}{\partial v}=\frac{a c}{\sqrt{(a d)^{2}+(b c)^{2}}} \times \frac{d^{2}}{2 \sqrt{b^{2} u+d^{2} v}} ; & \frac{\partial y}{\partial v}=-\frac{b d}{\sqrt{(a d)^{2}+(b c)^{2}}} \times \frac{c^{2}}{2 \sqrt{a^{2} u-c^{2} v}} . \tag{5}
\end{array}
$$

Subsequently, the Jacobian is found to be

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left\|\begin{array}{ll}
\partial x / \partial u & \partial y / \partial u \tag{6}\\
\partial x / \partial v & \partial y / \partial v
\end{array}\right\|=\frac{a b c d}{4 \sqrt{\left(a^{2} u-c^{2} v\right)\left(b^{2} u+d^{2} v\right)}}
$$

Digression: An alternative method of computing the Jacobian is to evaluate $\partial(u, v) / \partial(x, y)$ at first, then invert the result, as follows:

$$
\begin{align*}
\frac{\partial(u, v)}{\partial(x, y)} & =\left\|\begin{array}{ll}
\partial u / \partial x & \partial v / \partial x \\
\partial u / \partial y & \partial v / \partial y
\end{array}\right\|=\left\|\begin{array}{cc}
2 x / a^{2} & 2 x / c^{2} \\
2 y / b^{2} & -2 y / d^{2}
\end{array}\right\|=\frac{4 x y}{(a d)^{2}}+\frac{4 x y}{(b c)^{2}}=\frac{4 x y\left[(b c)^{2}+(a d)^{2}\right]}{(a b c d)^{2}} \\
& =\frac{4 a b c d \sqrt{\left(a^{2} u-c^{2} v\right)\left(b^{2} u+d^{2} v\right)}}{(a d)^{2}+(b c)^{2}} \times \frac{(b c)^{2}+(a d)^{2}}{(a b c d)^{2}}=\frac{4 \sqrt{\left(a^{2} u-c^{2} v\right)\left(b^{2} u+d^{2} v\right)}}{a b c d} . \tag{7}
\end{align*}
$$

Clearly, the Jacobian in Eq.(6) for transforming from $x y$ to the $u v$ coordinates is the inverse of that in Eq.(7) for transforming from the $u v$ back into the $x y$ coordinate system.

