Problem 3) a) The minor and major semi-axes of the cross-sectional ellipse at a height $z=n \Delta$ are $(n \Delta / h) a$ and $(n \Delta / h) b$. Therefore, assuming the slice is sufficiently thin, the volume of the corresponding slice will be $\pi(n \Delta / h)^{2} a b \Delta$. The volume of the cone is now obtained by adding up the volumes of all the slices from $n=1$ to $N=h / \Delta$, as follows:

$$
\begin{aligned}
V & =\lim _{\Delta \rightarrow 0} \sum_{n=1}^{N} \pi(n \Delta / h)^{2} a b \Delta=\lim _{\Delta \rightarrow 0}\left(\pi a b \Delta^{3} / h^{2}\right) \sum_{n=1}^{N} n^{2} \\
& =\lim _{\Delta \rightarrow 0}\left(\pi a b \Delta^{3} / 6 h^{2}\right) N(N+1)(2 N+1) \\
& =\lim _{\Delta \rightarrow 0}\left(\pi a b / 6 h^{2}\right) h(h+\Delta)(2 h+\Delta)=\pi a b h / 3 .
\end{aligned}
$$

b) The procedure is the same, except that the minor and major semi-axes of the cross-sectional ellipse at $z=n \Delta$ are now $(\sqrt{n \Delta / h}) a$ and $(\sqrt{n \Delta / h}) b$. The total volume is thus given by

$$
\begin{aligned}
V & =\lim _{\Delta \rightarrow 0} \sum_{n=1}^{N} \pi(n \Delta / h) a b \Delta=\lim _{\Delta \rightarrow 0}\left(\pi a b \Delta^{2} / h\right) \sum_{n=1}^{N} n \\
& =\lim _{\Delta \rightarrow 0}\left(\pi a b \Delta^{2} / 2 h\right) N(N+1)=\lim _{\Delta \rightarrow 0}(\pi a b / 2 h) h(h+\Delta)=\pi a b h / 2 .
\end{aligned}
$$

c) Once again, the procedure is the same, but the minor and major semi-axes of the crosssectional ellipse at $z=n \Delta$ are $(n \Delta / h)^{3 / 2} a$ and $(n \Delta / h)^{3 / 2} b$. The total volume is now given by

$$
\begin{aligned}
V & =\lim _{\Delta \rightarrow 0} \sum_{n=1}^{N} \pi(n \Delta / h)^{3} a b \Delta=\lim _{\Delta \rightarrow 0}\left(\pi a b \Delta^{4} / h^{3}\right) \sum_{n=1}^{N} n^{3} \\
& =\lim _{\Delta \rightarrow 0}\left(\pi a b \Delta^{4} / h^{3}\right)[N(N+1) / 2]^{2}=\lim _{\Delta \rightarrow 0}\left(\pi a b / 4 h^{3}\right)[h(h+\Delta)]^{2}=\pi a b h / 4
\end{aligned}
$$

