Solution to Problem 3) The volume of the cylinder, $V(r, h)=\pi r^{2} h$, is the function that needs to be maximized. The constraint is $g(r, h)=r^{2}+(h / 2)^{2}=R^{2}$, which is readily obtained by inspecting the diagram that shows the cylinder encompassed by the sphere. We proceed to optimize the function $V+\lambda g=\pi r^{2} h+\lambda\left[r^{2}+(h / 2)^{2}\right]$ by setting its partial derivatives with respect to r and h equal to zero. We find

$$
\begin{array}{lll}
\partial(V+\lambda g) / \partial r=2 \pi r h+2 \lambda r=0 & \rightarrow & h_{0}=-\lambda / \pi \\
\partial(V+\lambda g) / \partial h=\pi r^{2}+1 / 2 \lambda h=0 & \rightarrow & r_{0}^{2}=\lambda^{2} / 2 \pi^{2} .
\end{array}
$$

Substitution into the constraint equation, namely, $g(r, h)=R^{2}$, now yields

$$
g\left(r_{0}, h_{0}\right)=\lambda^{2} /\left(2 \pi^{2}\right)+\lambda^{2} /\left(4 \pi^{2}\right)=3 / 4(\lambda / \pi)^{2}=R^{2} \quad \rightarrow \quad \lambda_{0}= \pm \frac{2 \pi}{\sqrt{3}} R
$$

With the value of λ_{0} at hand, we substitute in the expressions for r_{0} and h_{0} to determine the optimum values of the cylinder's radius and height. The positive value of λ_{0} yields a negative value for h_{0}, which is unacceptable. Therefore,

$$
h_{0}=2 R / \sqrt{3}, \quad r_{0}=\sqrt{2 / 3} R, \quad V_{\max }=\frac{4 \pi R^{3}}{3 \sqrt{3}} .
$$

The maximum volume of the cylinder is thus seen to be equal to the volume of the sphere divided by $\sqrt{3}$.

